213 research outputs found

    FIRI - a Far-Infrared Interferometer

    Full text link
    Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA and Canada and submitted to the European Space Agency as part of "Cosmic Vision 2015-2025

    Urinary 1-Hydroxypyrene Levels in Workers Exposed to Polycyclic Aromatic Hydrocarbon from Rubber Wood Burning

    Get PDF
    AbstractBackgroundUrinary 1-hydroxypyrene (1-OHP) was selected as a biomarker of polycyclic aromatic hydrocarbons (PAHs) to explore the accumulation level in the bodies of workers at rubber smoke sheet factories in southern Thailand.MethodsSpot urine samples were taken from four groups of workers from June 2006 to November 2007. The nonexposure or control groups included habitual cigarette smokers and nonsmokers. The other two groups were workers exposed to particle-bound PAHs from rubber wood smoke and they were nonsmokers. All spot urine samples were analyzed for 1-OHP and creatinine levels.ResultsThe mean ± standard deviation urinary 1-OHP in the control group of habitual smokers and the nonsmokers was 0.24 ± 0.16 μmol/mol creatinine and not-detected to 0.14 μmol/mol creatinine, respectively. In the workers, the 1-OHP levels on workdays had no significant difference from the 1-OHP levels on the days off. The yearly average 1-OHP level was 0.76 ± 0.41 μmol/mol creatinine whereas the average 1-OHP level during 10 consecutive workdays was 1.06 ± 0.29 μmol/mol creatinine (p > 0.05).ConclusionThe urinary 1-OHP levels of workers exposed to PAHs were high. The accumulation of 1-OHP in the body was not clear although the workers had long working hours with few days off during their working experience. Therefore, a regular day off schedule and rotation shift work during high productive RSS should be set for RSS workers

    Methanol in W3(H2O) and Surrounding Regions

    Full text link
    We present the results of an interferometric study of 38 millimeter-wave lines of CH3OH in the region around the water maser source W3(H2O) and a region extending about 30" to the south and west of the hydroxyl maser source W3(OH). The methanol emitting region around W3(H2O) has an extent of 2.0" x 1.2" (4400 x 2600 AU). The density is of order 1.e7 cm-3, sufficient to thermalize most of the methanol lines. The kinetic temperature is approximately 140 K and the methanol fractional abundance greater than 1.e-6, indicative of a high degree of grain mantle evaporation. The W3(H2O) source contains sub-structure, with peaks corresponding to the TW source and Wyrowski's B/C, separated by 2500 AU in projection. The kinematics are consistent with these being distinct protostellar cores in a wide binary orbit and a dynamical mass for the region of a few tens of Mo. The extended methanol emission to the southwest of W3(OH) is seen strongly only from the lowest excitation lines and from lines known elsewhere to be class I methanol masers, namely the 84.5 GHz 5(-1)-4(0)E and 95.2 GHz 8(0)-7(1)A+ lines. Within this region there are two compact clumps, which we denote as swA and swB, each about 15" (0.16 pc projected distance) away from W3(OH). Excitation analysis of these clumps indicates the presence of lines with inverted populations but only weak amplification. The sources swA and swB appear to have kinetic temperatures of order 50-100 K and densities of order 1.e5 - 1.e6 cm-3. The methanol fractional abundance for the warmer clump is of order 1.e-7, suggestive of partial grain mantle evaporation. The clumping occurs on mass scales of order 1 Mo.Comment: 28 pages including 6 figures and 4 tables, accepted by Ap

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Detection of water at z = 0.685 towards B0218+357

    Get PDF
    We report the detection of the H_2O molecule in absorption at a redshift z = 0.68466 in front of the gravitationally lensed quasar B0218+357. We detect the fundamental transition of ortho-water at 556.93 GHz (redshifted to 330.59 GHz). The line is highly optically thick and relatively wide (15 km/s FWHM), with a profile that is similar to that of the previously detected CO(2--1) and HCO^+(2--1) optically thick absorption lines toward this quasar. From the measured level of the continuum at 330.59 GHz, which corresponds to the level expected from the power-law spectrum S(ν)ν0.25S(\nu) \propto \nu^{-0.25} already observed at lower frequencies, we deduce that the filling factor of the H_2O absorption is large. It was already known from the high optical thickness of the CO, ^{13}CO and C^{18}O lines that the molecular clouds entirely cover one of the two lensed images of the quasar (all its continuum is absorbed); our present results indicate that the H_2O clouds are covering a comparable surface. The H_2O molecules are therefore not confined to small cores with a tiny filling factor, but are extended over parsec scales. The H_2O line has a very large optical depth, and only isotopic lines could give us the water abundance. We have also searched for the 183 GHz line in absorption, obtaining only an upper limit; this yields constraints on the excitation temperature.Comment: 4 pages, 3 figures, accepted in ApJ Letter

    Physical activity interventions in schools for improving lifestyle in European countries

    Get PDF
    Background : In the last decades, children’s and adolescents’ obesity and overweight have increased in European Countries. Unhealthy eating habits and sedentary lifestyle have been recognized to determine such an epidemic. Schools represent an ideal setting to modify harmful behaviors, and physical activity could be regarded as a potential way to avoid the metabolic risks related to obesity. Methods : A systematic review of the literature was carried out to summarize the evidence of school-based interventions aimed to promote, enhance and implement physical activity in European schools. Only randomized controlled trials were included, carried out in Europe from January 2000 to April 2014, universally delivered and targeting pupils aged between 3 and 18 years old. Results : Forty-seven studies were retrieved based either on multicomponent interventions or solely physical activity programs. Most aimed to prevent obesity and cardiovascular risks among youths. While few studies showed a decrease in BMI, positive results were achieved on other outcomes, such as metabolic parameters and physical fitness. Conclusion : Physical activity in schools should be regarded as a simple, non-expensive and enjoyable way to reach all the children and adolescents with adequate doses of moderate to vigorous physical activity

    Formaldehyde Densitometry of Galactic Star-Forming Regions Using the H2CO 3(12)-3(13) and 4(13)-4(14) Transitions

    Full text link
    We present Green Bank Telescope (GBT) observations of the 3(12)-3(13) (29 GHz) and 4(13)-4(14) (48 GHz) transitions of the H2CO molecule toward a sample of 23 well-studied star-forming regions. Analysis of the relative intensities of these transitions can be used to reliably measure the densities of molecular cores. Adopting kinetic temperatures from the literature, we have employed a Large Velocity Gradient (LVG) model to derive the average hydrogen number density [n(H2)] within a 16 arcsecond beam toward each source. Densities in the range of 10^{5.5}--10^{6.5} cm^{-3} and ortho-formaldehyde column densities per unit line width between 10^{13.5} and 10^{14.5} cm^{-2} (km s^{-1})^{-1} are found for most objects, in general agreement with existing measurements. A detailed analysis of the advantages and limitations to this densitometry technique is also presented. We find that H2CO 3(12)-3(13)/4(13)-4(14) densitometry proves to be best suited to objects with T_K >~ 100 K, above which the H2CO LVG models become relatively independent of kinetic temperature. This study represents the first detection of these H2CO K-doublet transitions in all but one object in our sample. The ease with which these transitions were detected, coupled with their unique sensitivity to spatial density, make them excellent monitors of density in molecular clouds for future experiments. We also report the detection of the 9_2--8_1 A^- (29 GHz) transition of CH3OH toward 6 sources.Comment: 17 pages; 6 figures; Accepted by Ap

    Excitation of the molecular gas in the nuclear region of M82

    Get PDF
    We present high resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines are detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and a relatively low UV radiation field (GO = 10^2). The remaining gas is predominantly found in clouds with higher densities (n=10^5 cm^-3) and radiation fields (GO = 10^2.75), but somewhat lower column densities (N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n=10^6 cm^-3) and UV field (GO = 10^3.25). These results show the strength of multi-component modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter

    Exploring the tensions of being and becoming a medical educator

    Get PDF
    BackgroundPrevious studies have identified tensions medical faculty encounter in their roles but not specifically those with a qualification in medical education. It is likely that those with postgraduate qualifications may face additional tensions (i.e., internal or external conflicts or concerns) from differentiation by others, greater responsibilities and translational work against the status quo. This study explores the complex and multi-faceted tensions of educators with qualifications in medical education at various stages in their career.MethodsThe data described were collected in 2013–14 as part of a larger, three-phase mixed-methods research study employing a constructivist grounded theory analytic approach to understand identity formation among medical educators. The over-arching theoretical framework for the study was Communities of Practice. Thirty-six educators who had undertaken or were undertaking a postgraduate qualification in medical education took part in semi-structured interviews.ResultsParticipants expressed multiple tensions associated with both becoming and being a healthcare educator. Educational roles had to be juggled with clinical work, challenging their work-life balance. Medical education was regarded as having lower prestige, and therefore pay, than other healthcare career tracks. Medical education is a vast speciality, making it difficult as a generalist to keep up-to-date in all its areas. Interestingly, the graduates with extensive experience in education reported no fears, rather asserting that the qualification gave them job variety.ConclusionThis is the first detailed study exploring the tensions of educators with postgraduate qualifications in medical education. It complements and extends the findings of the previous studies by identifying tensions common as well as specific to active students and graduates. These tensions may lead to detachment, cynicism and a weak sense of identity among healthcare educators. Postgraduate programmes in medical education can help their students identify these tensions in becoming and develop coping strategies. Separate career routes, specific job descriptions and academic workload models for medical educators are recommended to further the professionalisation of medical education
    corecore