182 research outputs found

    MBE Growth of Al/InAs and Nb/InAs Superconducting Hybrid Nanowire Structures

    Full text link
    We report on \textit{in situ} growth of crystalline Al and Nb shells on InAs nanowires. The nanowires are grown on Si(111) substrates by molecular beam epitaxy (MBE) without foreign catalysts in the vapor-solid mode. The metal shells are deposited by electron-beam evaporation in a metal MBE. High quality supercondonductor/semiconductor hybrid structures such as Al/InAs and Nb/InAs are of interest for ongoing research in the fields of gateable Josephson junctions and quantum information related research. Systematic investigations of the deposition parameters suitable for metal shell growth are conducted. In case of Al, the substrate temperature, the growth rate and the shell thickness are considered. The substrate temperature as well as the angle of the impinging deposition flux are explored for Nb shells. The core-shell hybrid structures are characterized by electron microscopy and x-ray spectroscopy. Our results show that the substrate temperature is a crucial parameter in order to enable the deposition of smooth Al layers. Contrary, Nb films are less dependent on substrate temperature but strongly affected by the deposition angle. At a temperature of 200{\deg}C Nb reacts with InAs, dissolving the nanowire crystal. Our investigations result in smooth metal shells exhibiting an impurity and defect free, crystalline superconductor/InAs interface. Additionally, we find that the superconductor crystal structure is not affected by stacking faults present in the InAs nanowires.Comment: 8 pages, 10 figures, 1 tabl

    In-plane anisotropy of electrical transport in Y0.85_{0.85}Tb0.15_{0.15}Ba2_2Cu3_3O7x_{7-x} films

    Full text link
    We fabricate high-quality c-axis oriented epitaxial YBa2_2Cu3_3O7x_{7-x} films with 15% of yttrium atoms replaced by terbium (YTBCO) and study their electrical properties. The Tb substitution reduces the charge carrier density resulting in increased resistivity and decreased critical current density compared to the pure YBa2_2Cu3_3O7x_{7-x} films. The electrical properties of the YTBCO films show an in-plane anisotropy in both the superconducting and normal state providing evidence for the twin-free film. Unexpectedly, the resistive transition of the bridges also demonstrates the in-plane anisotropy that can be explained within the framework of Tinkham's model of the resistive transition and the Berezinskii-Kosterlitz-Thouless (BKT) model depending on the sample parameters. We consider YTBCO films to be a promising platform for both the fundamental research on the BKT transition in the cuprate superconductors and for the fabrication of devices with high kinetic inductance

    Compressed basis GMRES on high-performance graphics processing units

    Get PDF
    Krylov methods provide a fast and highly parallel numerical tool for the iterative solution of many large-scale sparse linear systems. To a large extent, the performance of practical realizations of these methods is constrained by the communication bandwidth in current computer architectures, motivating the investigation of sophisticated techniques to avoid, reduce, and/or hide the message-passing costs (in distributed platforms) and the memory accesses (in all architectures). This article leverages Ginkgo’s memory accessor in order to integrate a communication-reduction strategy into the (Krylov) GMRES solver that decouples the storage format (i.e., the data representation in memory) of the orthogonal basis from the arithmetic precision that is employed during the operations with that basis. Given that the execution time of the GMRES solver is largely determined by the memory accesses, the cost of the datatype transforms can be mostly hidden, resulting in the acceleration of the iterative step via a decrease in the volume of bits being retrieved from memory. Together with the special properties of the orthonormal basis (whose elements are all bounded by 1), this paves the road toward the aggressive customization of the storage format, which includes some floating-point as well as fixed-point formats with mild impact on the convergence of the iterative process. We develop a high-performance implementation of the “compressed basis GMRES” solver in the Ginkgo sparse linear algebra library using a large set of test problems from the SuiteSparse Matrix Collection. We demonstrate robustness and performance advantages on a modern NVIDIA V100 graphics processing unit (GPU) of up to 50% over the standard GMRES solver that stores all data in IEEE double-precision

    Supercurrent in Nb/InAs-Nanowire/Nb Josephson junctions

    Get PDF
    We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100\,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.Comment: 5 Figure, submitted to Journal of Applied Physic

    Induced Superconductivity in Hybrid Au/YBa2Cu3O7-x Electrodes on Vicinal Substrates

    Full text link
    Superconducting electrodes are an integral part of hybrid Josephson junctions used in many applications including quantum technologies. We report on the fabrication and characterization of superconducting hybrid Au/YBa2Cu3O7-x (YBCO) electrodes on vicinal substrates. In these structures, superconducting CuO2-planes face the gold film, resulting in a higher value and smaller variation of the induced energy gap compared to the conventional Au/YBCO electrodes based on films with the c-axis normal to the substrate surface. Using scanning tunneling microscopy, we observe an energy gap of about 10-17 meV at the surface of the 15- nm-thick gold layer deposited in situ atop the YBCO film. To study the origin of this gap, we fabricate nanoconstrictions from the Au/YBCO heterostructure and measure their electrical transport characteristics. The conductance of the nanoconstrictions shows a series of dips due to multiple Andreev reflections in YBCO and gold providing clear evidence of the superconducting nature of the gap in gold. We consider the Au/YBCO electrodes to be a versatile platform for hybrid Josephson devices with a high operating temperature

    Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units

    Full text link
    [EN] We contribute to the optimization of the sparse matrix-vector product by introducing a variant of the coordinate sparse matrix format that balances the workload distribution and compresses both the indexing arrays and the numerical information. Our approach is multi-platform, in the sense that the realizations for (general-purpose) multicore processors as well as graphics accelerators (GPUs) are built upon common principles, but differ in the implementation details, which are adapted to avoid thread divergence in the GPU case or maximize compression element-wise (i.e., for each matrix entry) for multicore architectures. Our evaluation on the two last generations of NVIDIA GPUs as well as Intel and AMD processors demonstrate the benefits of the new kernels when compared with the optimized implementations of the sparse matrix-vector product in NVIDIA's cuSPARSE and Intel's MKL, respectively.J. I. Aliaga, E. S. Quintana-Ortí, and A. E. Tomás were supported by TIN2017-82972-R of the Spanish MINECO. H. Anzt and T. Grützmacher were supported by the Impuls und Vernetzungsfond of the Helmholtz Association under grant VH-NG-1241 and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. The authors would like to thank the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of Technology for providing access to an NVIDIA A100 GPU.Aliaga, JI.; Anzt, H.; Grützmacher, T.; Quintana-Ortí, ES.; Tomás Domínguez, AE. (2022). Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units. Concurrency and Computation: Practice and Experience. 34(14):1-13. https://doi.org/10.1002/cpe.6515113341

    Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest.Biotechnology & Biological Sciences Research Council (BBSRC)CABI Bioscienc

    Ultra-Low Threshold cw Lasing in Tensile Strained GeSn Microdisk Cavities

    Get PDF
    GeSn is proven as a good candidate to achieve CMOS-compatible laser sources on silicon. Lasing demonstrations in this alloy were based on directness of the band structure, this directness being increased with increasing the Sn content above 8 at.%. These past few years the research were consequently focused on incorporating the highest Sn content as possible to achieve high directness and high temperature laser operation. This unfortunately results is increased threshold. In this contribution we discuss the advantages in combining tensile strain engineering with lower Sn content alloys. This approach is motivated by the higher material quality in lower Sn content. The case with Sn content as small as 5.4 at.% Sn will be discussed. The alloy is initially compressively strained, and exhibits an indirect band gap that is turned to direct by applying tensile strain. A specific technology based on transfer On Insulator stressor layer on metal was developed to address strain engineering, thermal cooling and defective interface with the Ge-VS. This led to lasing in Ge0.95Sn0.05 microdisk cavities with dramatically reduced thresholds, by two order of magnitude, as compared to the case with high Sn alloys and as consequence enables cw operation

    Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility

    Get PDF
    Issues of morphology, nucleation and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (<600 deg C) and high (>600 deg. C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure
    corecore