
Research Paper

The International Journal of High
Performance Computing Applications
2022, Vol. 0(0) 1–18
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221115140
journals.sagepub.com/home/hpc

Compressed basis GMRES on
high-performance graphics processing units

José I Aliaga1, Hartwig Anzt2,3, Thomas Grützmacher2,
Enrique S Quintana-Ortı́4 and Andrés E Tomás4

Abstract
Krylov methods provide a fast and highly parallel numerical tool for the iterative solution of many large-scale sparse linear
systems. To a large extent, the performance of practical realizations of these methods is constrained by the communication
bandwidth in current computer architectures, motivating the investigation of sophisticated techniques to avoid, reduce,
and/or hide the message-passing costs (in distributed platforms) and the memory accesses (in all architectures). This article
leverages Ginkgo’s memory accessor in order to integrate a communication-reduction strategy into the (Krylov) GMRES
solver that decouples the storage format (i.e., the data representation in memory) of the orthogonal basis from the
arithmetic precision that is employed during the operations with that basis. Given that the execution time of the GMRES
solver is largely determined by the memory accesses, the cost of the datatype transforms can be mostly hidden, resulting in
the acceleration of the iterative step via a decrease in the volume of bits being retrieved from memory. Together with the
special properties of the orthonormal basis (whose elements are all bounded by 1), this paves the road toward the
aggressive customization of the storage format, which includes some floating-point as well as fixed-point formats with mild
impact on the convergence of the iterative process. We develop a high-performance implementation of the “compressed
basis GMRES” solver in the Ginkgo sparse linear algebra library using a large set of test problems from the SuiteSparse
Matrix Collection. We demonstrate robustness and performance advantages on a modern NVIDIA V100 graphics
processing unit (GPU) of up to 50% over the standard GMRES solver that stores all data in IEEE double-precision.

Keywords
Sparse linear systems, mixed precision, Krylov solvers, compressed basis GMRES, graphics processing units

Introduction

Krylov solvers enhanced with some type of sophisticated
preconditioning technique nowadays compound a sound
approach for the iterative solution of large and sparse linear
systems (Saad, 2003). In particular, preconditioned Krylov
solvers are often preferred over their direct counterparts for
the solution of discretized high-dimensional problems (e.g.,
3D problems), where a factorization-based direct solver
would incur significant fill-in; see, for example, Davies
(2006) and Saad (2003). Krylov solvers are also widely
appealing for massively parallel architectures (such as
graphics processing units or GPUs) due to their superior
scalability.

At a high level, Krylov methods construct a basis that
spans a Krylov subspace. At each iteration, this basis is
expanded by adding another Krylov basis via the multi-
plication of the sparse coefficient matrix with the Krylov
basis vector generated in the previous iteration and a se-
quence of vector operations and vector scalings to obtain an

orthonormal set of Krylov basis vectors (Saad, 2003). Thus,
each iteration of a Krylov solver comprises the multipli-
cation of the sparse coefficient matrix with a vector (SPMV)
plus a sequence of vector operations and reductions. All the
numerical operations (kernels) appearing in Krylov methods
are well-suited for parallelization. Unfortunately, most of
these kernels, including SPMV, are memory-bound on virtually
all modern processor architectures (Horowitz, 2014). As
a result, many generic as well as hardware-specific

1Universitat Jaume I, Spain
2Karlsruhe Institute of Technology, Karlsruhe, Germany
3Innovative Computing Laboratory, University of Tennessee at Knoxville,
TN, Knoxville, USA
4Universitat Politècnica de València, Valencia, Spain

Corresponding author:
Thomas Grützmacher, Karlsruher Institut fur Technologie, Hermann-von-
Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
Email: thomas.gruetzmacher@kit.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420221115140
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0001-8469-764X
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0003-3969-2174
mailto:thomas.gruetzmacher@kit.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420221115140&domain=pdf&date_stamp=2022-08-05

optimization efforts for Krylov methods have focused on
avoiding, reducing, or hiding (i.e., overlapping with com-
putation) the communication/memory accesses of the algo-
rithm. Some optimization techniques targeting the
communication overhead include the following:

• The design of specialized (i.e., application-specific)
sparse matrix data layouts that reduce the indexing
information (overhead) and/or improve data locality
when accessing the contents of the sparse coefficient
matrix (Saad, 2003).

• The reorganization of the operations inside the body
of the Krylov solver trading off reduced communi-
cation for an increase of computation per iteration,
possibly also at the cost of introducing numerical
instabilities that may result in slower convergence of
the iteration; see, for example, Hoemmen (2010) and
Cools (2019) and the references therein.

• The reformulation of the solver as an iterative re-
finement scheme combined with the use of mixed-
precision for the storage of and arithmetic operations
with the sparse coefficient matrix (Higham, 2002).

• The utilization of adaptive-precision schemes for
memory-bound preconditioners (Anzt et al., 2019a).

In this article, we also address the communication costs
of Krylov methods, focusing on the generalized minimal
residual (GMRES) algorithm, a Krylov solver for general
linear systems that explicitly maintains the complete set of
Krylov basis vectors instead of relying on short recurrences
(as many other Krylov solvers do) (Saad, 2003). Orthog-
onally to all previous communication optimization efforts,
our optimized variant of the GMRES algorithm reduces
communication in the access to the Krylov basis during the
iteration loop body. In more detail, our GMRES algorithm
leverages Ginkgo’s memory accessor, introduced in Anzt
et al. (2021) and Grützmacher et al. (2021), to decouple the
memory storage format from the arithmetic precision so as
to maintain the Krylov basis vectors in a compact “reduced
precision” format. This radically diminishes the memory
access volume during the orthogonalization, while not af-
fecting the convergence rate of the solver, yielding notable
performance improvements. Concretely, we make the fol-
lowing contributions in our article:

• We follow the ideas in Anzt et al. (2021) and
Grützmacher et al. (2021) and use the therein pre-
sented “memory accessor” in order to decouple the
memory storage format from the arithmetic precision,
specifically applying this strategy to maintain the
Krylov basis in reduced precision in memory while
performing all arithmetic operations using full,
hardware-supported IEEE 64-bit double-precision
(DP).

• We analyze the benefits that result from casting the
Krylov basis into different compact storage formats,
including the natural IEEE 32-bit single-precision (SP)
and 16-bit half-precision (HP) as well as some other
non-IEEE fixed point-based alternatives enhanced with
vector-wise normalization.

• We integrate the mixed-precision GMRES algorithm
into the Ginkgo sparse linear algebra library (https://
ginkgo-project.github.io).

• We provide strong practical evidence of the advantage
of our approach by developing a high-performance
realization of the solver for modern NVIDIA’s V100
GPUs and testing it on a considerable number of
large-scale problems from the SuiteSparse Matrix
Collection (Davis and Hu, 2011) (https://sparse.ta-
mu.edu/).

The rest of the article is organized as follows. First, we
review a list of related works in the direction of mixed-
precision Krylov solvers, and then, we briefly recall the
GMRES algorithm before motivating the compressed basis
GMRES (CB-GMRES) storing the orthonormal basis in
reduced precision. Next, we provide details about how we
decouple the memory precision from the arithmetic preci-
sion and how we realize the implementation of CB-GMRES
in Ginkgo. The experimental evaluation of the CB-GMRES
implementation follows, assessing the accuracy, conver-
gence, performance, and flexibility of the developed al-
gorithm. We conclude with a summary of the findings and
ideas for future research.

Related work

The potential of using lower precision in differ-
ent components of a Krylov solver has been previously
investigated for both Lanczos-based (short-term recur-
rence) and Arnoldi-based (long-term recurrence) algo-
rithms and the associated methods for linear systems of
equations.

From the theoretical point of view, most of those works
are based on rounding error analysis for Krylov solvers
running in finite precision. In a relevant result, Paige (1980)
derived distinct relations between the loss of orthogonality
and other important quantities in finite precision Lanczos.
Greenbaum (1989) extended these results to analyze
backward stability for the CG method in finite precision.
She also derived theoretical bounds for the maxi-
mum attainable accuracy in finite precision for CG,
BiCG, BiCGSTAB, and other Lanczos-based methods
(Greenbaum, 1997). Carson (2015) expanded these results
to s-step Lanczos/CG variants, deducing that an s-step
Lanczos in finite precision behaves like a classical Lanczos
run in lower “effective” precision, where this “effective”
precision depends on the conditioning of the polynomials

2 The International Journal of High Performance Computing Applications 0(0)

used to generate the s-step bases. Additional bounds for
Lanczos-based Krylov solvers running in finite precision
can be found in Meurant and Strakoš (2006).

Simoncini and Szyld (2003) and van Den Eshof and
Sleijpen (2004) established a theory on “inexact Krylov
subspace methods” that applies the basis-generating SPMV

as a perturbed operator carrying some error, which may
reflect situations where reducing the cost of the operator
application is essential or where the operator is only
available as an approximation. Theoretical results prove
that inexact Krylov methods can achieve the same solution
accuracy as high precision Krylov solvers if the error in the
perturbed operator is controlled and adapted to the residual
(Simoncini and Szyld, 2003 and van Den Eshof and
Sleijpen, 2004).

Concerning long-recurrence strategies, Gratton et al.
(2020) combined the previous findings from Björck
(1967), Paige (1980), and Paige et al. (2006) to derive
theoretical norms for a mixed-precision GMRES algorithm
based on modified Gram–Schmidt. In this algorithm, they
consider using inexact (e.g., single-precision) inner prod-
ucts in the orthogonalization process, which results in a loss
of double-precision (DP) orthogonality of the Krylov basis
vectors. This makes the work by Gratton et al. (2020) very
similar to our approach. However, our solution is different
in several aspects:

• In our CB-GMRES solver, we decouple the arithmetic
precision from the memory storage format to maintain
the basis vectors in lower precision while using high
precision in all arithmetic;

• we consider not only IEEE single-precision as the
reference compact storage format but also IEEE half-
precision (HP) and fixed-point formats based on 32-
bit and 16-bit integers;

• we realize a production-ready and sustainable im-
plementation of CB-GMRES for high-performance
GPU architectures based on classical Gram–Schmidt
with re-orthogonalization; and

• we provide comprehensive experimental results an-
alyzing accuracy, convergence, and performance of
our CB-GMRES solver.

The GMRES algorithm

Consider the linear system

Ax ¼ b (1)

where the coefficient matrix A2R
n×n is sparse, with nz

nonzero entries, b2R
n represents the right-hand side

vector, and x2R
n contains the sought-after solution vector.

Figure 1 displays a mathematical formulation of the re-
started GMRES algorithm for the iterative solution of (1).

There we assume that M 2R
n×n defines an appropriate

preconditioner, x0 is an initial approximation to the actual
solution, e1 stands for the first column of the square identity
matrix of order m + 1, and the scalars m and η, respectively,
define the dimension of the orthogonal basis and the
threshold for the re-orthogonalization. The orthogonaliza-
tion mechanism in the algorithm relies on the classical
Gram–Schmidt (CGS) method, but a version that employs
the modified Gram–Schmidt (MGS) variant is simple to
derive from that (see Golub and Loan, 1996). Unless ex-
plicitly stated, we prefer CGS with re-orthogonalization
over MGS as it is competitive in terms of accuracy while
enabling higher performance on modern hardware archi-
tectures via the use of BLAS-2 routines. The stopping
criterion for the iterative algorithm can be based, for ex-
ample, on the residual krmk2 = kb � Axmk2 being smaller
than a certain relative threshold τ �kbk2. The GMRES al-
gorithm can internally keep track of the residual by itera-
tively updating the residual vector in every iteration (for
brevity, we omit this feature in Figure 1). However,
rounding effects can cause the iterative residual to differ
from the explicit residual, and therefore, every restart ex-
plicitly computes the residual to re-align the iteratively
computed residual.

From the computational point of view, the main ker-
nels appearing in the GMRES algorithm correspond to
the application of the preconditioner M and the SPMV

operation with the coefficient matrix A (both in Line 3),
the orthogonalization of vector w with respect to the
vectors in the basis Vj (Lines 5 and 8), the solution of the
linear least squares (LLS) problem (Line 17), the as-
sembly of the next iterate, which requires the application
of the orthogonal basis followed by the preconditioner
(Line 17), and a few minor vector operations such as
AXPYs and vector scaling.

The LLS problem in the GMRES algorithm can
be solved via the QR factorization (Golub and Loan,
1996), where this decomposition can be cheaply ob-
tained using an updating technique as the Hessenberg
matrices for two consecutive iterations that differ only
in one column. Therefore, the cost associated with
the solution of this problem is minor in comparison with
that of the global algorithm. In addition, the opera-
tions that are necessary to update the new estimate to
the solution xm (Line 17) also contribute a minor cost
to the overall procedure, as they are m times less fre-
quent in comparison with the kernel calls in Lines 3, 5,
and 8.

CB-GMRES storing the orthonormal basis in
reduced precision

For simplicity, consider that the GMRES algorithm inte-
grates a simple preconditioner, such as a Jacobi scheme (or a

Aliaga et al. 3

block-Jacobi variant with a small block size) (Saad, 2003).
The performance of the algorithm is then strongly deter-
mined by the costs of the SPMV kernel and the general
matrix–vector products (GEMV), with VT

j and Vj. These are
memory-bound kernels, with their execution times largely
dictated by the number of memory accesses (memory op-
erations or memops hereafter). The optimization we propose
thus aims to reduce the cost of the GEMV operations by
storing the Krylov basis Vj in a more compact reduced
precision format.

In order to analyze the theoretical memop count of the
SPMV and the GEMV kernels, for simplicity, let us assume the
following:

1. The right-hand side vectors for both types of matrix–
vector products reside in cache. In general, this is not
true but, for the following theoretical derivation, the
memory layer where the vectors reside is not
important.

2. The sparse coefficient matrix is stored using the
compressed sparse row (CSR) format. This is a
general and flexible data layout that employs one in-
teger per nonzero value to represent its column index,
plus n + 1 integers for the row pointers (Saad, 2003).

3. The re-orthogonalization mechanism included in the
GMRES algorithm (Lines 7–11 in Figure 1) is not
needed.

Then, the ratio between the contributions of the two
GEMV and the CSR SPMV to the memop count, due to the
accesses to the corresponding matrices, is given by

MemopsGEMV

MemopsSPMV
¼ 2nm0

nzð1þf Þþðnþ1Þf ≈
2nm0

nsð1þf Þþnf

¼ 2m0

sð1þf Þþf

(2)

where s = nz/n is the average number of nonzero entries per
row of the sparse matrix; m0 = j� 1 is the size of the already-
computedKrylov basis, that is, the number of vectors the new
basis vector is orthogonalized against; and f represents a
factor for the indexing overhead into the sparse data struc-
tures, for example, when using 32-bit integers to represent the
indices and 64-bit for the data values, f = 32/64 = 1/2.

For a non-restarted version ofGMRES, the size of theKrylov
subspacem0 steadily growswith the iteration count (m0 = j� 1 at
iteration j), which hints that the memory operations related to the
orthogonalization can quickly dominate the cost. In practical
implementations though, theGMRES solver is usually enhanced
with a restart mechanism, as in the formulation of the algorithm
in the previous section, to keep both the memory requirements
and the orthogonalization cost at reasonable levels. Depending
on the problem size and the available resources, the typical
values for the restart parameter vary betweenm = 30 and 200. At
the same time, the nonzero-per-row ratio s is in general relatively
small and often significantly smaller than the restart parameterm.
Therefore, considering the memory operations in that restart
cycle, equation (2) then becomes

Memops GEMV

Memops SPMV
¼

Pm�1
j¼1 2nj

mðnzð1þ f Þþðnþ1Þf Þ ≈
m

sð1þ f Þþ f
:

(3)

Figure 1. Algorithmic formulation of the restarted GMRES algorithm for the solution of sparse linear systems.

4 The International Journal of High Performance Computing Applications 0(0)

With typical parameters f = 1/2 (CSR format) and a restart
parameter m = 100, the memory access count due to the
orthogonalization theoretically thus exceeds the memory
access overhead for the SPMV kernel for matrices with ratio
s = nz/n < 67.

CB-GMRES. In order to reduce the memory access
volume in the orthogonalization step of GMRES, we
propose to store the vectors of the Krylov basis Vj in a
compact reduced precision format, retrieve the data from
memory in that format, and transform the values into IEEE

64-bit DP prior to the orthogonalization computations they
are involved in (Lines 5, 8, and 17). This advocates for
decoupling the memory storage format from the arithmetic
precision while preserving IEEE 64-bit precision in the
arithmetic operations (Anzt et al., 2019b).

The decoupling strategy provides full flexibility in terms
of choosing a memory representation format, enabling the
usage of the natural IEEE 16-bit or 32-bit formats as well as
other, “more flexible” alternatives (with no hardware sup-
port for the arithmetic). In particular, the property that the
entries of the orthonormal vectors forming the Krylov basis
are all bounded by 1 pushed us to explore the efficiency of
more aggressive customized formats. For example, it is
possible to reduce the number of bits employed for the
exponent in the floating-point format by normalizing it with
respect to a baseline factor. In our investigation, we take this
approach to the extreme, resulting in the evaluation of fixed-
point formats for the storage of the orthogonal basis. For this
purpose 1) we normalize each vector of the basis by scaling
its entries with (the inverse of) its largest vector entry (in
absolute value); and 2) we then store only the fractional part
of each value of the result as an integer number, plus the
normalization factor for each vector.

For convenience, we refer to the resulting algorithm as
compressed basis GMRES (CB-GMRES) in the remainder
of the article. We again emphasize that we still use DP in all
arithmetic operations and only use lower precision formats
for the memory operations.

Discussion. Storing the orthogonal basis of a Krylov
method in a reduced precision format will typically intro-
duce rounding errors that may affect the numerical prop-
erties of the method, potentially impacting the convergence
and numerical stability of the iterative solver. As the so-
lution approximation is optimal in the generated Krylov
subspace, the perturbed Krylov basis vectors may result in a
loss in the DP orthogonality of the basis vectors and a
different (Krylov) subspace and in which the solution ap-
proximation is computed. However, the solution approxi-
mation process in the LLS solver accounts for the perturbed
basis vectors, and as long as the generated subspace allows
for a good approximation of the solution in the sense that
there exists a good solution approximation in the space
spanned by the Krylov basis vectors, this approximation
will be found in the optimization process. Hence, on the one

hand, as long as the basis vectors are “relatively” close to the
optimal basis vectors, we can expect that the convergence
will be only mildly affected. On the other hand, we may
assume that the need for increasing the Krylov subspace
dimension (equivalent to additional iterations) can be
compensated by the faster execution of each iteration. The
numerical experiments in this work generally confirm this
assumption.

To close this section, we emphasize that:
• Our approach is complementary to other techniques
which aim to reduce the memory access overhead, in
the sense that it can be combined with these other
optimizations. For example, CB-GMRES can be
complemented by customizing the sparse matrix data
layout to the application, operating with an iterative
refinement scheme, or exploiting customized precision
in the preconditioner, among others.

• The arithmetic precision is decoupled from the rep-
resentation format so that we can actually store the data
for the Krylov basis in any format while relying on the
data types with hardware support for the arithmetic
operations.

Implementation of CB-GMRES

The Ginkgo sparse linear algebra library

For convenience and ease of use, we have realized the CB-
GMRES algorithm in the Ginkgo ecosystem (Anzt et al.,
2020a,b): Ginkgo is a sparse linear algebra library im-
plemented inmodern C++ that embraces two principal design
concepts: The first principle, aiming at future technology
readiness, is to consequently separate the numerical algo-
rithms from the hardware-specific kernel implementation to
ensure correctness (via comparison with sequential reference
kernels), performance portability (by applying hardware-
specific kernel optimizations), and extensibility (via kernel
backends for other hardware architectures). The second
design principle—pursuing user-friendliness—is the con-
vention to express functionality in terms of linear operators:
every solver, preconditioner, factorization, matrix–vector
product, and matrix reordering are expressed as linear op-
erators (or composition thereof). This allows to easily
combine the CB-GMRES with any preconditioner available
in Ginkgo and to select the realization of the SPMV kernel that
is most appropriate for the characteristics of a specific
problem (Anzt et al., 2020c).

Ginkgo relies on an “executor” concept to favor platform
portability. The executor encapsulates all information about
memory location and execution domain of linear algebra
objects and automatically orchestrates memory allocation,
memory transfers, and kernel selection. For the CB-
GMRES implementation with the orthonormal Krylov
basis stored in reduced precision, the executor concept is

Aliaga et al. 5

extended with a “memory accessor,” described next, that
handles the data conversion transparently to the user.

Memory accessor

At a high level, the idea of the CB-GMRES solver is to
compress the orthogonal matrix/vector before and after the
memory operations using one of the reduced/customized
storage formats but still use the working precision (i.e.,
IEEE754 DP) for the arithmetic operations (Anzt et al., 2021
and Grützmacher et al., 2021). Retrieving the orthonormal
basis in reduced precision from memory thus requires
reading the basis contents and converting them into DP.
When these values are stored in SP, the conversion is easy to
perform via a datatype casting operator. For fixed-point
representations, though, the conversion requires some ad-
ditional manipulations plus the scaling with a normalization
factor.

To decouple the memory access and conversion from the
code development effort, we use a memory accessor that
converts the data between DP and the memory storage/
communication format on-the-fly (see Figure 2). The effi-
cient implementation of the accessor aims to hide the cost of
these data conversions by overlapping them with the
memory accesses, in principle introducing a minor or even
negligible overhead. In addition, the introduction of this
technique can accelerate the execution as accessing the data
in lower precision significantly reduces the volume of
memory accesses per iteration.

Considering the realization of the CB-GMRES algo-
rithm, after the new basis vector vj = v is formed at iteration
j, the memory accessor is activated in order to compress the
DP contents of this vector before storing them into memory;
see Lines 13 and 14 in the algorithm in Figure 1. The
memory accessor is also active when retrieving the full
orthogonal basis Vj from memory; see Lines 5 and 8 of the
algorithm.

On the technical side, the accessor leverages static
polymorphism (via C++ templates) for both the arithmetic
precision (in our work, fixed to IEEE DP) and the memory
format. While this flexible design can accommodate any
memory format, we currently only support fp64, fp32,
and fp16 (for ieee DP, SP, and HP, respectively) and int32
and int16 (for 32-bit and 16-bit fixed-point formats) in
Ginkgo. The versions based on integer formats rely on a
fixed-point representation in order to maintain the or-
thonormal basis vectors. This representation only re-
quires a fractional part because the vectors are
normalized, making each vector entry smaller than one.
However, this is not efficient for large vectors because the
largest absolute value will likely be significantly smaller
than one, therewith wasting representation range (and
precision). To optimize the accuracy, a different scaling
factor is used for each vector

σj ¼
��vj

��
∞

���vj
��
2

max intbb

where vj is the vector computed at iteration j before nor-
malization and max_intbb is the maximum positive value of
the integer representation using bb 2 {16, 32} bits. Both
norms can be computed simultaneously so that the extra
overhead due to the memory accesses to obtain the infinity
norm remains small. The vector vj is then stored in Vj+1 as

Vjþ1 ¼
�
Vj, vj

�
σj
�
,

and any subsequent access to the contents of Vj+1 implies an
intrinsic post-multiplication by a diagonal matrix Σj+1 = diag
(σ1, σ2, …, σj, σj+1) that contains the scaling factors on the
diagonal. This scaling adds one multiplication per element to
the computational cost of any operation involving the or-
thogonal basis and storing the scaling factor in memory.
However, as the whole algorithm is heavily bandwidth-
bound, we expect that this arithmetic overhead remains small.

Experimental evaluation of the compressed
basis GMRES

In this section, we analyze several properties of the CB-
GMRES algorithm in order to assess the benefits of this
solver as part of a production code. Concretely, we in-
vestigate the following questions:

1. Can we achieve high accuracy in the solution
approximations?

2. How significant is the convergence delay introduced
by moving away from the “full” precision Krylov

Figure 2. Accessor separating the memory format from the
arithmetic format and realizing on-the-fly data conversion in
each memory access.

6 The International Journal of High Performance Computing Applications 0(0)

basis vectors and utilizing instead basis vectors that
are low precision approximations of these ortho-
normal vectors?

3. What are the performance advantages of the CB-
GMRES over the standard (DP) GMRES?

4. Which specific storage format should we use for the
memory operations?

Setup

To answer these questions, we select a subset of 49 large-
scale test matrices from the SuiteSparse Matrix Collection
(Davis and Hu, 2011) that we adopt as benchmark prob-
lems to explore the accuracy, convergence, and perfor-
mance of the CB realizations of the GMRES algorithm.
The selected test matrices (listed along with some key
properties in Table 1) correspond to the largest regular test
cases from the SuiteSparse Matrix Collection for which a
preconditioned GMRES running in double-precision
converges within a reasonable iteration count. All solver
implementations are part of the Ginkgo library and utilize
building blocks from the Ginkgo environment such as
preconditioners, utility functions, and benchmarking en-
vironments. The SPMV kernel integrated into all variants of
GMRES to generate the Krylov basis vectors is Ginkgo’s
CSR-based SPMV routine; this particular realization of SPMV

maintains the coefficient matrix in compressed sparse row
(CSR) format and accounts for the nonzero distribution in
the target matrices by automatically selecting the CSR
kernel that provides the best performance (Anzt et al.,
2020c). The orthogonalization kernel inside the GMRES
solvers is based on CGS with optional re-
orthogonalization. For the majority of the test cases, this
strategy has shown to be superior over the MGS orthog-
onalization in terms of accuracy and runtime. For con-
venience, we offer the convergence results for an MGS-
based GMRES in the supplementary material. The
GMRES and CB-GMRES solvers are algorithmically
identical except that the CB-GMRES algorithm can store
the basis in reduced precision. We use the notation
GMRES<arith, mem>, where arith refers to the precision
format used in the arithmetic operations and mem refers to
the precision format used to store the Krylov basis.
Consequently, GMRES<fp64, fp64> and GMRES<fp32,
fp32> denote the standard GMRES solver operating in ieee
754 DP and ieee 754 SP, respectively. In contrast,
GMRES<fp64, fp32>, GMRES<fp64, fp16>,
GMRES<fp64, int32>, and GMRES<fp64, int16> are CB-
GMRES versions differing in the memory precision format.
In Table 2, we list the distinct GMRES variants we use in the
remainder of the article along with details and markers we use
in the performance graphs.

Table 1. Test matrices.

Matrix Size Non-zero Non-zeros per row

af_0_k101 503,625 17,550,675 34.8
af_1_k101 503,625 17,550,675 34.8
af_2_k101 503,625 17,550,675 34.8
af_3_k101 503,625 17,550,675 34.8
af_4_k101 503,625 17,550,675 34.8
af_5_k101 503,625 17,550,675 34.8
af_shell1 504,855 17,562,051 34.8
af_shell10 1,508,065 52,259,885 34.7
af_shell2 504,855 17,562,051 34.8
af_shell3 504,855 17,562,051 34.8
af_shell4 504,855 17,562,051 34.8
af_shell5 504,855 17,579,155 34.8
af_shell6 504,855 17,579,155 34.8
af_shell7 504,855 17,579,155 34.8
af_shell8 504,855 17,579,155 34.8
af_shell9 504,855 17,588,845 34.8
apache2 715,176 4,817,870 6.7
Atmosmodd 1,270,432 8,814,880 6.9
Atmosmodj 1,270,432 8,814,880 6.9
Atmosmodl 1,489,752 10,319,760 6.9
Atmosmodm 1,489,752 10,319,760 6.9
audikw_1 943,695 77,651,847 82.3
bone010 986,703 47,851,783 48.5
boneS10 914,898 40,878,708 44.7
Bump_2911 2,911,419 127,729,899 43.9
circuit5M_dc 3,523,317 14,865,409 4.2
Cube_Coup_dt6 2,164,760 124,406,070 57.5
CurlCurl_2 806,529 8,921,789 11.1
CurlCurl_3 1,219,574 13,544,618 11.1
CurlCurl_4 2,380,515 26,515,867 11.1
ecology1 1,000,000 4,996,000 5.0
ecology2 999,999 4,995,991 5.0
Fault_639 638,802 27,245,944 42.7
Flan_1565 1,564,794 114,165,372 73.0
G3_circuit 1,585,478 7,660,826 4.8
Geo_1438 1,437,960 60,236,322 41.9
Hook_1498 1,498,023 59,374,451 39.6
inline_1 503,712 36,816,170 73.1
ldoor 952,203 42,493,817 44.6
mc2depi 525,825 2,100,225 4.0
ML_Geer 1,504,002 110,686,677 73.6
parabolic_fem 525,825 3,674,625 7.0
Serena 1,391,349 64,131,971 46.1
Ss 1,652,680 34,753,577 21.0
t2em 921,632 4,590,832 5.0
thermal2 1,228,045 8,580,313 7.0
tmt_sym 726,713 5,080,961 7.0
tmt_unsym 917,825 4,584,801 5.0
Transport 1,602,111 23,487,281 14.7

Aliaga et al. 7

https://journals.sagepub.com/doi/supp/10.1177/10943420221115140

In the performance tests, we utilize Ginkgo’s CUDA
executor, which is heavily optimized for NVIDIA GPUs.
We run all experiments on an NVIDIA V100 GPU with
support for compute capability 7.0 NVIDIA Corp (2017).
The V100 accelerator board is equipped with 16 GB of main
memory, 128 KB L1 cache, and 6 MB of L2 cache. A
bandwidth test reported 897 GB/s for main memory access
in this particular device (Tsai et al., 2020). The theoretical
peak performance for the V100 GPU is 7.83 DP TFLOPS
(i.e., 7.83 � 1012 floating-point operations per second).
Ginkgo’s CUDA backend was compiled using CUDA
version 9.2.

Impact on basis orthogonality

As a first step in the experimental analysis, we investigate
how rounding the values in the Krylov basis vectors to a
lower precision format affects the quality of the Krylov
basis. In particular, we are interested in the orthogonality
loss. For that, we choose the GMRES<fp64,fp32> con-
figuration where all arithmetic operations use IEEE 754 DP
while IEEE 754 SP is used for storing the basis vectors. As a
metric to assess the orthogonality at iteration k, we consider
the basis V = [v1, v2…vk+1] and evaluate
kVT � V � Ik∞ ¼ max1≤i≤m

Pn
j¼1jðVT � V � IÞijj. Figure 3

visualizes this metric before and after the re-
orthogonalization step for the CB-GMRES solver and
compares the results of this orthogonality metric against
those attained from a standard DP GMRES and a standard
SP GMRES. The analysis reveals that the orthogonality of
the Krylov basis vectors degrades when the basis vectors are
stored in lower precision, yet the quality remains superior to
that observed for SP GMRES. We next investigate how
storing the Krylov basis in a compressed form impacts the
attainable accuracy.

Accuracy of CB-GMRES

To investigate whether the CB-GMRES can match the
accuracy levels attained by DP GMRES, we consider 49
linear systems of the form Ax = b, with the coefficient matrix
defined from the test matrices in Table 1. For each problem,
we set the i-th entry of the exact solution x to x [i] = sin(i), i =

1, 2, …, n; then scale x to a unit norm (xdx/kxk2); and
finally generate b as bdA � x. The GMRES algorithm is
started with an initial guess x0 = 0, uses a restart parameter
m = 100, and is stopped when the solution approximation x*
yields a residual kAx* � bk2 ≤ 10�12kbk2. In this experi-
ment, we consider both the non-preconditioned solvers and
a setting where all methods (both GMRES and CB-
GMRES) are left-preconditioned with a scalar Jacobi
preconditioner—which is equivalent to scaling the linear
problems to a unit diagonal prior to the iterative solution
process. The motivation is that a Jacobi-preconditioned
GMRES is more realistic for production use while the
non-preconditioned GMRES may enhance numerical in-
stabilities. The Jacobi preconditioner is always stored in the
arithmetic precision of the solver in order to isolate the
convergence difference to the change in the storage format.

To avoid expensive explicit residual computations, the
GMRES algorithm internally updates a recurrence residual
that is used to check convergence. However, when using
finite precision and due to the accumulation of rounding
error, this iteratively computed residual can diverge from
the real residual, and the GMRES algorithm may stop “too
early” even though the real residual did not fall below the
selected threshold. Using the compressed basis formats to
store the orthonormal basis may enlarge this effect. To
tackle this problem, we modify all the implementations to
compute the explicit residual once convergence is indicated
by the recurrence residual but continue iterating with the
updated residual in case the actual accuracy threshold is not
fulfilled.

To assess the solution accuracy, in Figure 4, we report the
normalized explicitly computed residual kAx* � bk2/kbk2
for the solution approximations generated with the distinct
CB-GMRES versions either executed as a plain algorithm
(top) or enhanced with a scalar Jacobi preconditioner
(bottom). For comprehensiveness, we report the final re-
sidual norm also for those cases where the accuracy target
cannot be reached. In these initial results, we observe that
the standard DP GMRES based on CGS with re-
orthogonalization (GMRES<fp64,fp64>), the standard DP
GMRES based on modified Gram–Schmidt (MGS-
GMRES<fp64,fp64>), and the CB-GMRES variants stor-
ing the basis vectors in 32-bit floating-point precision

Table 2. List of solvers we consider along with the markers we use in the remainder of the article.

✴ MGS-GMRES<fp64,fp64> DP GMRES based on MGS orthogonalization
✰ GMRES<fp64,fp64> DP GMRES (baseline in CB-GMRES evaluation)
◯ MGS-GMRES<fp32,fp32> SP GMRES based on MGS orthogonalization
, GMRES<fp64,fp32> CB-GMRES using fp32 for storing the Krylov basis
4 GMRES<fp64,fp16> CB-GMRES using fp16 for storing the Krylov basis
à GMRES<fp64,int32> CB-GMRES using int32 for storing the Krylov basis
– GMRES<fp64,int16> CB-GMRES using int16 for storing the Krylov basis

8 The International Journal of High Performance Computing Applications 0(0)

Figure 3. Orthogonality of the Krylov basis vectors before and after re-orthogonalization for the standard DP GMRES and SP GMRES
and the CB-GMRES GMRES<fp64,fp32>. The test matrices are parabolic_fem (top), ss (center), and circuit5M_dc (bottom).

Aliaga et al. 9

(GMRES<fp64,fp32>) or 32-bit fixed-point precision
(GMRES<fp64,int32>) generally achieve the same residual
accuracy for both the non-preconditioned application and
the Jacobi-preconditioned case. We furthermore observe
that an SP GMRES (MGS-GMRES<fp32,fp32>) fails to
provide solution approximations of the same accuracy level
and may therefore be disregarded as a valid option when
aiming for high accuracy. By storing the Krylov basis in
fp16 or int16, the CB-GMRES algorithm converges to a
solution of lower accuracy, however, often still achieving a
residual accuracy better than an SP GMRES (MGS-
GMRES<fp32,fp32>).

Convergence of CB-GMRES

Next, we investigate the impact of storing the basis vectors
in a compressed format on the convergence of GMRES. To
expose the effects, in Figure 5, we visualize the convergence
behavior of the Jacobi-preconditioned CB-GMRES variants

for the circuit5M_dc and Serena problems. While all CB-
GMRES variants ultimately reach the relative residual
stopping criterion, the storage format selected for the
Krylov basis impacts the convergence rate and, in conse-
quence, the iteration count. The spikes in the residual curves
occur in the iterations where the recurrently computed re-
sidual is updated by an explicit residual. This occurs
when the Krylov basis size reaches the restart parameter
or the recurrence residual indicates convergence. For
GMRES<fp64,int16> in particular, we notice significant
corrections of the recurrence residual. Overall, we observe
that using a compressed format to store the Krylov basis can
delay convergence and require additional basis vectors. In
order to quantify this effect for a broad range of problems, in
Figure 6, we display the iteration count of the CB-GMRES
variants relative to the DP GMRES iteration count if they
reach the same residual accuracy (even if that accuracy does
not fulfill the residual norm stopping criteria). Again, we
include results for the non-preconditioned solvers (top) and

Figure 4. Normalized residual of plain GMRES (top) and Jacobi-preconditioned GMRES (bottom) using different precision for
arithmetic and memory operations. Detailed results are listed in the supplementary material.

10 The International Journal of High Performance Computing Applications 0(0)

https://journals.sagepub.com/doi/supp/10.1177/10943420221115140

the Jacobi-preconditioned solvers (bottom). If a solver does
not succeed in reaching the same residual accuracy, we set
the iteration overhead marker to “100” to clearly indicate
that this solver is not a valid option.

This experiment shows that the CB-GMRES reali-
zations GMRES<fp64,fp32> and GMRES<fp64,int32>
generally match the iteration count of DP GMRES.
Exceptions are the ATMOSMOD problems where the

Figure 6. Iteration overhead of the CB-GMRES variants relative to the DP GMRES iteration count. The upper graph represents the
results for the plain solver runs and the lower graph for the Jacobi-preconditioned solver runs.

Figure 5. Detailed convergence analysis of the Jacobi-preconditioned CB-GMRES variants for the circuit5M_dc and Serena problems.

Aliaga et al. 11

CB-GMRES variants using 32-bit memory precision
need a few additional iterations. In contrast, when the
orthogonal basis is stored using the 16-bit formats, even
if the residual accuracy can be achieved, the overhead
often increases dramatically. We recall that the or-
thogonalization inside GMRES is based on a classi-
cal Gram–Schmidt equipped with re-orthogonalization
(CGS-reortho). For convenience, we also include the
iteration counts for a DP GMRES using modified Gram–

Schmidt (MGS) orthogonalization. In contrast to CGS-
reortho, MGS requires the use of less efficient BLAS-1
routines and therefore results in lower performance on
highly parallel architectures. At the same time, the it-
eration counts reveal that the use of MGS rarely im-
proves the convergence of the GMRES solver (see cases
with iteration overhead smaller 1).

In the left-hand side plot in Figure 7, we report a few
key statistics obtained from the experimental evaluation
with the 49 test problems using either the non-
preconditioned GMRES or the Jacobi-preconditioned
GMRES. While storing the Krylov basis in fp32 or
int32 generally incurs no iteration overhead, when using
fp16 storage, we obtain a median iteration overhead of
1.5× with the 50%-quantiles reaching up to 2.5× and the
90%-quantiles reaching up to 5×. For int16, we obtain a
median iteration overhead of 2.5× with the 50%-
quantiles reaching up to 4× and the 90%-quantiles
reaching up to 8×.

Performance of CB-GMRES

Even though we have now experimentally demonstrated
that the CB-GMRES variants can compensate for the
perturbations in the subspace via additional iterations

(which is equivalent to extending the subspace by addi-
tional basis vectors), the resulting algorithms will only be
useful in production if the associated iteration overhead is
compensated by a runtime reduction coming from the
decreased memory access volume. In the right-hand side
plot in Figure 7, we show statistics on the performance
improvements that CB-GMRES renders over DP GMRES
when using different storage formats for the Krylov
basis, again considering both a plain GMRES and its
Jacobi-preconditioned variant. As could be expected from
the large iteration overheads, storing the Krylov basis in
int16 or fp16 usually results in a slow-down of the global
solution process. Conversely, storing the Krylov basis in
int32 or fp32 yields attractive performance improvements,
with slight advantages for the GMRES<fp64,fp32> vari-
ant. As listed in Table 3, the median speed-up for
GMRES<fp64,fp32> is 1.4×, with the 50%-quantiles
reaching up to 1.5× and outliers reaching up to 1.75×. We
note a few outliers that are likely related to rounding effects
enabling faster or slower convergence than the DP
GMRES.

In Figure 8, we provide a detailed performance eval-
uation by visualizing the speed-up for the distinct test
problems, distinguishing between the non-preconditioned
GMRES (top graph) and the Jacobi-preconditioned
GMRES (bottom graph). Here, we notice a rather uni-
form picture concerning the speed-ups for
GMRES<fp64,fp32> and GMRES<fp64,int32>, with the
exception of the atmosmod problems where the iteration
overhead cannot be compensated with faster memory
access. Overall, GMRES<fp64,fp32> is slightly superior
over GMRES<fp64,int32>, which is likely due to the
overhead of the scaling process and the additional scaling
factors needed when storing the basis vectors in int32.

Figure 7. Statistics obtained from running the CB-GMRES algorithms on the 49 test problems. Left: iteration overhead (relative to DP
GMRES) and right: speed-up relative to DPGMRES. The data reflects both the non-preconditioned runs and the Jacobi-preconditioned
settings.

12 The International Journal of High Performance Computing Applications 0(0)

From this experiment, we conclude that the
GMRES<fp64,fp32> is an appropriate choice for a wide
range of problems. We also note that GMRES based on
modified Gram–Schmidt orthogonalization (MGS-
GMRES<fp64,fp64>) is consequently slower than
GMRES based on classical Gram–Schmidt orthogonal-
ization (GMRES<fp64,fp64>). This may be expected as
MGS requires the use of less efficient BLAS-1
operations.

Varying the Krylov subspace dimension

When motivating the use of a more compact storage
format to maintain the orthonormal vectors in an earlier
section, we argued that the memory savings against DP
GMRES grow with the dimension of the Krylov subspace
m. In more detail, when ignoring numerical effects, we
can expect that the speed-up asymptotically reaches the
ratio between the storage format complexities: 4× when

Table 3. Statistics for the CB-GMRES speed-up relative to the GMRES<fp64,fp64> baseline implementation on the test matrices listed
in Table 1.

Solver Arithmetic mean Arithmetic median Variance

GMRES<fp64,fp64> 1 1 0
GMRES<fp64,fp32> 1.36 1.41 0.09
GMRES<fp64,fp16> 1.04 0.98 0.26
GMRES<fp64,int32> 1.32 1.34 0.04
GMRES<fp64,int16> 0.67 0.55 0.16

Figure 8. Speed-up of the non-preconditioned CB-GMRES (top) and Jacobi-preconditioned CB-GMRES (bottom) over the respective
DP GMRES variants.

Aliaga et al. 13

using GMRES<fp64,fp16> or GMRES<fp64,int16> and
2× when using GMRES<fp64,fp32> or GMRES<f-
p64,int32>. In Figure 9, we quantify those speed-ups
experimentally, considering restart parameters in the
range 10–300. We note that larger restart values are rarely
employed as they come with high computational com-
plexity and memory requirements typically exceeding the
hardware capabilities. We emphasize that in this exper-
iment, we ignore any numerical effects but only focus on
the runtime needed to execute 10 restart cycles with
different restart sizes. Also, even though we already
identified the GMRES<fp64,fp32> as being superior in
terms of convergence and performance, we include all CB
variants in this analysis. In Figure 9, we employ gray lines
to indicate the speed-up behavior for the distinct matrices
and use boxplots to illustrate the statistics for the CB-
GMRES variants. The results indicate that the average
speed-ups for GMRES<fp64,fp32> or GMRES<f-
p64,int32> asymptotically approach a value below 2×,
with the speed-ups being constantly higher for the former
(which requires no scaling). The speed-up is smaller than
2× because the cost savings are limited to those obtained
from the compressed storage of the orthogonal basis but not
in other parts of the algorithm , for example, the SPMV kernel
(see Amdahl’s law). For GMRES<fp64,fp16> or
GMRES<fp64,int16>, the speed-up values are larger,
though below the 4× theoretical bound. Again, the scaling
process and memory overhead make the

GMRES<fp64,int16> speed-ups inferior to the
GMRES<fp64,fp16> speed-ups.

Acknowledging that Figure 9 does not reflect the nu-
merical effects that occur when using larger restart pa-
rameters, in Figure 10, we quantify the actual iteration
overheads (left) and speed-ups (right) for the non-
preconditioned and Jacobi-preconditioned CB-GMRES
over the DP GMRES variants when increasing the restart
value to m = 300. Compared to Figure 7, we notice a
moderate growth in the iteration overhead and a more
substantial increase of speed-up. The median speed-ups
increase to 1.6× for GMRES<fp64,fp32> and 1.5× for
GMRES<fp64,int32> over the DP GMRES baseline, re-
spectively. The fact that these speed-ups match those ex-
pected from Figure 9 indicates that using 32-bit formats for
storing the Krylov basis in CB-GMRES has only a negli-
gible impact on the convergence behavior. Conversely, the
speed-ups for GMRES<fp64,fp16> and GMRES<f-
p64,int16> do not fulfill the expectations, confirming that
16-bit formats are insufficient for storing the Krylov basis in
CB-GMRES.

Combining CB-GMRES with incomplete
factorization preconditioning

In the previous sections, we have analyzed the convergence
and performance of CB-GMRES when being used as a
stand-alone solver or a preconditioned method equipped

Figure 9. Speed-up for different CB-GMRES variants (GMRES<arith,mem>) over DP GMRES (GMRES<fp64,fp64>) for increasing
restart values.

14 The International Journal of High Performance Computing Applications 0(0)

with a lightweight scalar Jacobi scheme. Some situations,
however, require the use of a more sophisticated pre-
conditioner to aggressively reduce the iteration count. One
of the most popular and general preconditioners is the
ILU(0) preconditioner, belonging to the class of incomplete
LU factorization (ILU) preconditioners (Saad, 2003). The
ILU preconditioners approximate the factorization of the
system matrix, ignoring some of the fill-in that would arise
in an exact factorization, and applying the preconditioner by
solving the triangular systems coming from the incomplete
factors (Saad, 2003). The most popular ILU preconditioner
is ILU(0), which actually ignores all fill-in, therewith
preserving the sparsity pattern of the system matrix in the
incomplete factors. As both the ILU generation via a

modified Gaussian elimination and the ILU application in
terms of sparse triangular solves are inherently sequential,
significant efforts are being spent on developing algorithms
that are capable of leveraging the parallelism of GPU ar-
chitectures (Chow et al., 2015 and Anzt et al., 2015). To
acknowledge the goal of evaluating a high-performance
realization of an ILU-preconditioned GMRES solver, we
next consider the application of the (left) ILU precondi-
tioner in terms of matrix–vector multiplications with inverse
approximations of the incomplete factors. Specifically, in
this experiment, the ILU preconditioner generation is
handled via NVIDIA’s cuSPARSE ILU, followed by the
approximate inversion and subsequent application by the
Incomplete Sparse Approximate Inverse (ISAI) algorithm

Figure 10. Statistics obtained from running the CB-GMRES algorithms on the 49 test problems. Left: iteration overhead (relative to DP
GMRES) and right: speed-up relative to DPGMRES. The data reflects both the non-preconditioned runs and the Jacobi-preconditioned
settings, all using the restart parameter m = 300.

Figure 11. Normalized residual of ILU-preconditioned GMRES and ILU-preconditioned CB-GMRES using different precision for
arithmetic and memory operations.

Aliaga et al. 15

(Anzt et al., 2018), both available in the Ginkgo library.
Similar to Jacobi, all sections of the ILU preconditioner
compute and store the values in the arithmetic precision of
the corresponding solver in order to isolate the Krylov basis
storage precision as the only difference. We ignore test
matrices where the generation of an ILU preconditioner or
the ISAI triangular solver fails. Using this setup, in
Figure 11, we report the attainable relative residual accuracy
of the ILU-preconditioned CB-GMRES variants using a
restart parameter m = 100 and a relative residual stopping
criterion of 10�12. As in the previous experiments, the ILU-
preconditioned SP GMRES (MGS-GMRES<fp32,fp32>) is
unable to provide the same accuracy as the DP GMRES
(ILU-GMRES<fp64,fp64>). Conversely, the CB-GMRES
using low precision only for storing the Krylov basis
generally succeeds in providing the same accuracy if 32-bit
storage is used (ILU-GMRES<fp64,fp32> and ILU-
GMRES<fp64,int32>). Using 16-bit storage usually de-
creases the approximation accuracy, while often still

providing higher accuracy than the SP GMRES. In
Figure 12, we quantify the iteration overhead (top) and
speed-up (bottom) that the ILU-preconditioned CB-
GMRES achieves over the DP counterpart. Again,
markers indicating a 100× iteration overhead represent
solvers that were unable to achieve the same approximation
accuracy. We highlight that the ILU-preconditioned ILU-
GMRES<fp64,fp32> mostly exhibits a negligible iteration
overhead over the ILU-preconditioned DP GMRES (top
graph in Figure 12), resulting again in attractive speed-ups
over the DP GMRES (bottom graph in Figure 12). Com-
pared with the un-preconditioned and Jacobi-
preconditioned solver configurations reported in Figure 8,
the advantages of the ILU-GMRES<fp64,fp32> over the
standard DP GMRES decrease when using an ILU pre-
conditioner. This is expected as the ILU preconditioner
accounts for a significant portion of the solver execution
time, giving the CB-GMRES less room for improving the
overall runtime.

Figure 12. Iteration overhead (top) and speed-up (bottom) of the ILU-preconditioned CB-GMRES over the ILU-preconditioned DP
GMRES.

16 The International Journal of High Performance Computing Applications 0(0)

Summary and outlook

We have introduced and evaluated a GMRES algorithm
that maintains the Krylov basis in a compressed (compact)
form, in order to reduce the traffic between memory and
the processor arithmetic units, while performing all
arithmetic in double-precision, to preserve the hardware-
supported high precision arithmetic in all computations.
The key to this approach lies in decoupling the memory
storage format of the orthogonal basis from the arithmetic
precision when operating with that basis. This general
strategy was proposed and integrated into Ginkgo’s library,
in the form of a memory accessor, which is leveraged and
applied in our work to the specific case of the GMRES
algorithm.

We have integrated a high-performance realization of the
CB-GMRES operating with 16-bit and 32-bit Krylov basis
storage into the Ginkgo open source library. The perfor-
mance evaluation of this solver on an NVIDIAV100 GPU
demonstrates the practical advantages of the
communication-reduction technique, which are aligned
with the acceleration that could be expected from Amdahl’s
law. Using 32-bit storage for the Krylov basis, the algorithm
achieves an average 1.6× speed-up over a standard double-
precision GMRES. On the other hand, the 16-bit formats
further reduce the communication volume, but they regu-
larly fail to preserve the convergence characteristics of the
GMRES solver. Overall, we believe that the proposed
technique is useful as it tackles the memory wall problem
that dominates the performance of many current processors-
applications. Furthermore, its benefits are orthogonal and,
therefore accumulative, to those that can be attained with
other communication-reduction techniques applied, for
example, to the preconditioner, the realization of SPMV, or
the GMRES algorithm itself.

In future work, we will investigate whether compression
techniques that are traditionally used to compress large
datasets can pose an alternative to the use of 32-bit and 16-
bit fixed- and floating-point formats for storing the com-
pressed basis vectors.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: José
I. Aliaga and Andrés E. Tomás were supported by Project
PID2020-113656RB-C21 funded by MCIN/AEI/ 10.13039/
501100011033, whereas Enrique S. Quintana-Ortı́ was supported
by Project PID2020-113656RB-C22 funded by MCIN/AEI/
10.13039/501100011033. Hartwig Anzt and Thomas Grützmacher
were supported by the “Impuls und Vernetzungsfond” of the

Helmholtz Association under grant VH-NG-1241 and the US
Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

ORCID iDs

Jose I. Aliaga https://orcid.org/0000-0001-8469-764X
Thomas Grutzmacher https://orcid.org/0000-0001-9346-2981
Andrés E Tomás https://orcid.org/0000-0003-3969-2174

Supplemental Material

Supplemental Material for this article is available online.

References

Anzt H, Chow E and Dongarra J (2015) Iterative sparse triangular
solves for preconditioning. In: European conference on parallel
processing, Berlin, Heidelberg, 2015, Springer, pp. 650–661.

Anzt H, Cojean T, Chen YC, et al. (2020a) Ginkgo: A high per-
formance numerical linear algebra library. Journal of Open
Source Software 5(52): 2260. DOI: 10.21105/joss.02260.

Anzt H, Cojean T, Flegar G, et al. (2020b) Ginkgo: A Modern
Linear Operator Algebra Framework for High Performance
Computing.

Anzt H, Cojean T and Grützmacher T (2021) Technical Report:
Design of the Accessor. LLNL Report LLNL-SR-818775.
DOI: 10.2172/1773264.

Anzt H, Cojean T, Yen-Chen C, et al. (2020c) Load-balancing
sparse matrix vector product kernels on gpus. ACM Trans.
Parallel Comput 7(1)–26. URL. DOI: 10.1145/3380930.

Anzt H, Dongarra J, Flegar G, et al. (2019a) Adaptive precision in
block-Jacobi preconditioning for iterative sparse linear sys-
tem solvers. Concurrency and Computation: Practice and
Experience 31(6): e4460.

Anzt H, Flegar G, Grützmacher T, et al. (2019b) Toward a modular
precision ecosystem for high-performance computing. The In-
ternational Journal of High Performance Computing Applica-
tions 33(6): 1069–1078.URL.DOI: 10.1177/1094342019846547
https://doi.org/10.1177/1094342019846547.

Anzt H, Huckle TK, Bräckle J, et al. (2018) Incomplete sparse
approximate inverses for parallel preconditioning. Parallel
Computing 71: 1–22.

Björck Å (1967) Solving linear least squares problemsbyGram-Schmidt
orthogonalization. BIT Numerical Mathematics 7(1): 1–21.

Carson EC (2015) Communication-avoiding Krylov Subspace
Methods in Theory and Practice. PhD Thesis. Berkeley:
University of California.

Chow E, Anzt H and Dongarra J (2015) Asynchronous iterative
algorithm for computing incomplete factorizations on gpus.
In: International Conference on High Performance Com-
puting, Cham: Springer, pp. 1–16.

Cools S (2019) Analyzing and improving maximal attainable
accuracy in the communication hiding pipelined BiCGStab
method. Parallel Computing 86: 16–35.

Aliaga et al. 17

https://orcid.org/0000-0001-8469-764X
https://orcid.org/0000-0001-8469-764X
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0003-3969-2174
https://orcid.org/0000-0003-3969-2174
https://doi.org/10.21105/joss.02260
https://doi.org/10.2172/1773264
https://doi.org/10.1145/3380930
https://doi.org/10.1177/1094342019846547
https://doi.org/10.1177/1094342019846547

Davies T (2006) Direct Methods for Sparse Linear Systems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics.

Davis TA and Hu Y (2011) The university of florida sparse matrix
collection. ACM Transactions on Mathematical Software 38:
1–25. DOI: 10.1145/2049662.2049663.

Golub GH and Loan CFV (1996) Matrix Computations. 3rd
edition. Baltimore: The Johns Hopkins University Press.

Gratton S, Simon E, Titley-Peloquin D, et al. (2020) Exploiting
variable precision in GMRES. SIAM J. Sci. Comput. (to appear).

Greenbaum A (1989) Behavior of slightly perturbed Lanczos and
conjugate-gradient recurrences. Lin. Alg. Appl 113: 7–63.

Greenbaum A (1997) Estimating the attainable accuracy of re-
cursively computed residual methods. SIAM J. Matrix Anal.
Appl 18(3): 535–551.

Grützmacher T, Anzt H and Quintana-Ortı́ ES (2021) Using
ginkgo’s memory accessor for improving the accuracy of
memory-bound low precision blas. In: Software - Practice
and Experience, pp. 1–18. DOI: 10.1002/spe.3041.

Higham NJ (2002) Accuracy and Stability of Numerical Algo-
rithms. Second edition. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics. ISBN 0-89871-521-0.

Hoemmen M (2010) Communication-Avoiding Krylov Subspace
Methods. PhD Thesis. USA, p. AAI3413388.

Horowitz M (2014) Computing’s energy problem (and what we
can do about it). In: IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), San

Francisco, CA, USA, 09–13 February 2014, pp. 10–14. DOI:
10.1109/ISSCC.2014.6757323.

Meurant G and Strakoš Z (2006) The lanczos and conjugate
gradient algorithms in finite precision arithmetic. Acta Nu-
merica 15: 471–542. DOI: 10.1017/S096249290626001X.

NVIDIA Corp (2017) Whitepaper: NVIDIA TESLA V100 GPU
ARCHITECTURE.

Paige CC (1980) Accuracy and effectiveness of the Lanczos algorithm
for the symmetric eigenproblem. Lin. Alg. Appl 34: 235–258.

Paige CC, Rozložnı́k M, Strakoš Z, et al. (2006) Modified Gram-
Schmidt MGS, least squares, and backward stability of MGS-
GMRES. SIAM J. Matrix Anal. Appl 28(1): 264–284.

Saad Y (2003) Iterative Methods for Sparse Linear Systems. 2nd
edition. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics.

Simoncini V and Szyld DB (2003) Theory of inexact Krylov
subspace methods and applications to scientific computing.
SIAM J. Sci. Comput 25(2): 454–477.

Tsai YM, Cojean T and Anzt H (2020) Sparse linear algebra
on AMD and NVIDIA GPUs – the race is on. In:
Sadayappan P, Chamberlain BL, Juckeland G, et al (eds),
High Performance Computing. Cham: Springer Inter-
national Publishing, pp. 309–327. ISBN 978-3-030-
50743-5.

van den Eshof J and Sleijpen GL (2004) Inexact Krylov subspace
methods for linear systems. SIAM J. Matrix Anal. Appl 26(1):
125–153.

18 The International Journal of High Performance Computing Applications 0(0)

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1002/spe.3041
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1017/S096249290626001X

	Compressed basis GMRES on high-performance graphics processing units
	Introduction
	Related work

	The GMRES algorithm
	Consider the linear system
	CB-GMRES storing the orthonormal basis in reduced precision

	Implementation of CB-GMRES
	The Ginkgo sparse linear algebra library
	Memory accessor
	Experimental evaluation of the compressed basis GMRES
	Setup
	Impact on basis orthogonality
	Accuracy of CB-GMRES
	Convergence of CB-GMRES
	Performance of CB-GMRES
	Varying the Krylov subspace dimension
	Combining CB-GMRES with incomplete factorization preconditioning

	Summary and outlook
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental Material
	References

