8 research outputs found

    Anthracological evidence suggests naturalness of Pinus pinaster in inland southwestern Iberia

    Get PDF
    The study of well-preserved archaeological charcoals in the pre-Roman Iron Age settlement of Castillejos II (Badajoz, Spain) is used to reconstruct environmental conditions and land-use practices in vegetation landscapes in the southwest of the Iberian Peninsula before the arrival of Roman civilization. The results support that, while evergreen Quercus forests dominated during the Holocene, Pinus pinaster existed as a natural element of southwestern Iberian Peninsula vegetation. Although its presence could be linked to anthropogenic disturbance or fire history, it is suggested that P. pinaster populations survived during the Holocene in the region, mixed with oaks or in monospecific stands in mountain enclaves. This hypothesis contrasts with previous assumptions that P. pinaster was not autochthonous in the area

    Characterization and dating of coastal deposits of NW Portugal (Minho - Neiva area): a record of climate, eustasy and crustal uplift during the Quaternary

    Get PDF
    This study presents the characterization and numerical dating of Quaternary coastal deposits of NW Portugal, located between the mouths of the Minho and Neiva rivers. They record continental (small alluvial fans and streams) and transitional (aeolian dunes, interdune ponds, estuary, sandy and gravelly beaches) paleoenvironments. Quartz and K-feldspar optically stimulated luminescence (OSL) dating is employed as well as AMS C-14 dating. A staircase of coastal terraces (abrasion shore platforms) was identified (altimetry, a.s.l.) and ascribed to the following probable Marine Isotope Stages (MIS): T1 - 20-18 m (MIS11); T2 - ca. 13 m (MIS9); T3 - 9.3-7.3 m (MIS7); T4 - 5.5-4.5 m (MIS5); T5 - 3.5-2.0 m (MIS5). The terraces have some preserved sedimentary facies that includes coeval beach sediments on the lowest four. A late Pleistocene to Holocene sedimentary cover comprises four sub-units: a) the lower sub-unit, corresponding to ferruginous stream deposits and aeolian dunes dated ca. 67-61 ka (MIS4), probably related with sub-humid to arid mid-cold conditions; b) on the slopes, the lower sub-unit is overlapped by sandy-silty colluvium and sandy alluvial deposits dated ca. 56-28 ka (MIS3) and probably reflecting cold/mid-cold and wet/dry climate conditions; c) this sub-unit is topped by soliflucted lobes and sandy-silty/silty deposits recording cold and dry climate dated 20-13 ka (MIS2), and d) a top subunit dated to 16-18th century, recording Little Ice Age events, consisting of fluvial sediments coeval with temperate climate evolving to aeolian dunes from the Maunder Minimum (cold windy dry conditions).Portuguese Foundation for Science and Technology (FCT) - grant SFRH/BD/16438/2004 - project PTDC/GEO-GEO/2860/2012 - Sabbatical Leave Grant ref. SFRH/BSAB/1289/2012 - Research also has been supported by both Aarhus University and Risø DTU (Denmark

    Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data

    No full text
    Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected

    Paleoflora y Paleovegetación Ibérica III: Holoceno

    No full text
    International audienc

    Paleoflora y Paleovegetación Ibérica III: Holoceno

    No full text
    International audienc

    The Role of Nitric Oxide in Kidney Function

    No full text
    corecore