2,186 research outputs found

    Spectral evolution of bright NS LMXBs with INTEGRAL: an application of the thermal plus bulk Comptonization model

    Full text link
    The aim of this work is to investigate in a physical and quantitative way the spectral evolution of bright Neutron Star Low-Mass X-ray Binaries (NS LMXBs), with special regard to the transient hard X-ray tails. We analyzed INTEGRAL data for five sources (GX 5-1, GX 349+2, GX 13+1, GX 3+1, GX 9+1) and built broad-band X-ray spectra from JEM-X1 and IBIS/ISGRI data. For each source, X-ray spectra from different states were fitted with the recently proposed model compTB. The spectra have been fit with a two-compTB model. In all cases the first compTB describes the dominant part of the spectrum that we interpret as thermal Comptonization of soft seed photons (< 1 keV), likely from the accretion disk, by a 3-5 keV corona. In all cases, this component does not evolve much in terms of Comptonization efficiency, with the system converging to thermal equilibrium for increasing accretion rate. The second compTB varies more dramatically spanning from bulk plus thermal Comptonization of blackbody seed photons to the blackbody emission alone. These seed photons (R < 12 km, kT_s > 1 keV), likely from the neutron star and the innermost part of the system, the Transition Layer, are Comptonized by matter in a converging flow. The presence and nature of this second compTB component (be it a pure blackbody or Comptonized) are related to the inner local accretion rate which can influence the transient behaviour of the hard tail: high values of accretion rates correspond to an efficient Bulk Comptonization process (bulk parameter delta > 0) while even higher values of accretion rates suppress the Comptonization, resulting in simple blackbody emission (delta=0).Comment: 12 pages, 10 figures, accepted for publication in A&

    EXPO-AGRI: Smart Automatic Greenhouse Control

    Get PDF
    Predicting and controlling plant behavior in con- trolled environments is a growing requirement in precision agri- culture. In this context sensor networks and artificial intelligence methods represent key aspects for optimizing the processes of data acquisition, mathematical modeling and decision making. In this paper we present a general architecture for automatic greenhouse control. In particular, we focus on a preliminary model for predicting the risk of new infections of downy mildew of basil (Peronospora belbahrii) on sweet basil. The architecture has three main elements of innovation: new kinds of sensors are used to extract information about the state of the plants, model predictors are generated from this information by non-trivial processing methods, and informative predictors are automatically selected using regularization techniques

    Fe-chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism

    Get PDF
    Versatile and ecofriendly methods to perform oxidations at near-neutral pH are of crucial importance for processes aimed at purifying water. Chitosan, a deacetylated form of chitin, is a promising starting material owing to its biocompatibility and ability to form stable films and complexes with metals. Here, we report a novel chitosan-based organometallic complex that was tested both as homogeneous and heterogeneous catalyst in the degradation of contaminants of emerging concern in water. The stoichiometry of the complex was experimentally verified with different metals, namely, Cu(II), Fe(III), Fe(II), Co(II), Pd(II), and Mn(II), and we identified the chitosan-Fe(III) complex as the most efficient catalyst. This complex effectively degraded phenol, triclosan, and 3-chlorophenol in the presence of hydrogen peroxide. A putative ferryl-mediated reaction mechanism is proposed based on experimental data, density functional theory calculations, and kinetic modeling. Finally, a film of the chitosan-Fe(III) complex was synthesized and proven a promising supported heterogeneous catalyst for water purification

    u-RANIA: a neutron detector based on \mu -RWELL technology

    Full text link
    In the framework of the ATTRACT-uRANIA project, funded by the European Community, we are developing an innovative neutron imaging detector based on micro-Resistive WELL (μ\mu -RWELL) technology. The μ\mu -RWELL, based on the resistive detector concept, ensuring an efficient spark quenching mechanism, is a highly reliable device. It is composed by two main elements: a readout-PCB and a cathode. The amplification stage for this device is embedded in the readout board through a resistive layer realized by means of an industrial process with DLC (Diamond-Like Carbon). A thin layer of B4_4C on the copper surface of the cathode allows the thermal neutrons detection through the release of 7^7Li and α\alpha particles in the active volume. This technology has been developed to be an efficient and convenient alternative to the 3^3He shortage. The goal of the project is to prove the feasibility of such a novel neutron detector by developing and testing small planar prototypes with readout boards suitably segmented with strip or pad read out, equipped with existing electronics or readout in current mode. Preliminary results from the test with different prototypes, showing a good agreement with the simulation, will be presented together with construction details of the prototypes and the future steps of the project.Comment: Prepared for the INSTR20 Conference Proceeding for JINS

    The hard X-ray emission of X Per

    Full text link
    We present an analysis of the spectral properties of the peculiar X-ray pulsar X Per based on INTEGRAL observations. We show that the source exhibits an unusually hard spectrum and is confidently detected by ISGRI up to more than 100 keV. We find that two distinct components may be identified in the broadband 4-200 keV spectrum of the source. We interpret these components as the result of thermal and bulk Comptonization in the vicinity of the neutron star and describe them with several semi-phenomenological models. The previously reported absorption feature at ~30 keV is not required in the proposed scenario and therefore its physical interpretation must be taken with caution. We also investigated the timing properties of the source in the framework of existing torque theory, concluding that the observed phenomenology can be consistently explained if the magnetic field of the neutron star is ~10^14 G.Comment: Published as a letter in A&A; 4 pages, 2 figure

    A Hard X-ray View on Scorpius X-1 with INTEGRAL: non-Thermal Emission ?

    Full text link
    We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of magnitude. These results present close analogies to the behavior of GX 17+2, one of so-called Sco-like Z sources. Finally, the hard power law in the spectrum of Sco X-1 does not show any evidence of a high energy cutoff up to 100 - 200 keV, strongly suggesting a non-thermal origin of this component.Comment: 5 pages including 3 figures. Accepted for publication by ApJ Letter

    Detection of Genomic Variation by Selection of a 9 Mb DNA Region and High Throughput Sequencing

    Get PDF
    Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb) and 7 (1.1 Mb) from an individual from the International HapMap Project (NA12872). We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage≥4-fold, and 97.9% concordant in regions with coverage≥15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants

    Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain

    Full text link
    Protein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al., 2001), critically regulates neuroprotective pathways in the adult brain. When PP1 is inhibited pharmacologically or genetically, recovery from oxygen/glucose deprivation (OGD) in vitro, or ischemia in vivo is impaired. Furthermore, in vitro, inducing LTP shortly before OGD similarly impairs recovery, an effect that correlates with strong PP1 inhibition. Conversely, inducing LTD before OGD elicits full recovery by preserving PP1 activity, an effect that is abolished by PP1 inhibition. The mechanisms of action of PP1 appear to be coupled with several components of apoptotic pathways, in particular ERK1/2 (extracellular signal-regulated kinase 1/2) whose activation is increased by PP1 inhibition both in vitro and in vivo. Together, these results reveal that the mechanisms of recovery in the adult brain critically involve PP1, and highlight a novel physiological function for long-term potentiation and long-term depression in the control of brain damage and repair
    corecore