172 research outputs found

    1D atmosphere models from inversion of Fe I 630 nm observations with an application to solar irradiance studies

    Get PDF
    Present-day semi-empirical models of solar irradiance (SI) variations employ spectra computed on one-dimensional atmosphere models (1D models) representative of various solar surface features to reconstruct SI changes measured on timescales greater than a day. Various recent studies have, however, pointed out that the spectra synthesized on 1D models do not reflect the radiative emission of the inhomogenous atmosphere revealed by high-resolution solar observations. We aimed to derive observational-based atmospheres from such observations and test their accuracy for SI estimates. We analysed spectro-polarimetric data of the Fe I 630 nm line pair on photospheric regions representative of the granular, quiet Sun pattern (QS) and of small- and large-scale magnetic features, both bright and dark with respect to the QS. The data were taken on 2011 August 6, with the CRISP at the Swedish Solar Telescope, under excellent seeing conditions. We derived atmosphere models of the observed regions from data inversion with the SIR code. We studied the sensitivity of results to spatial resolution and temporal evolution, and discussed the obtained atmospheres with respect to several 1D models. The atmospheres derived from our study agree well with most of the compared 1D models, both qualitatively and quantitatively (differences are within 10%), but for pore regions. Spectral synthesis computations on the atmosphere obtained from the QS observations return SI between 400 nm and 2400 nm that agrees, on average, within 2.2% with standard reference measurements, and within -0.14% with the SI computed on the quiet Sun atmosphere employed by the most advanced semi-empirical model of SI variations.Comment: Accepted for publication in The Astrophysical Journa

    The Intensity Profile of the Solar Supergranulation

    Get PDF
    We have measured the average radial (cell center to network boundary) profile of the continuum intensity contrast associated with supergranular flows using data from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO). After removing the contribution of the network flux elements by the application of masks based on Ca II K intensity and averaging over more than 10^5 supergranular cells, we find a ~ 0.1% decrease in red and blue continuum intensity from the supergranular cell centers outward, corresponding to a ~ 1.0 K decrease in brightness temperature across the cells. The radial intensity profile may be caused either by the thermal signal associated with the supergranular flows or a variation in the packing density of unresolved magnetic flux elements. These are not unambiguously distinguished by the observations, and we raise the possibility that the network magnetic fields play an active role in supergranular scale selection by enhancing the radiative cooling of the deep photosphere at the cell boundaries.Comment: Accepted to Ap

    Radiative emission of solar features in Ca II K

    Full text link
    We investigated the radiative emission of different types of solar features in the spectral range of the Ca II K line. We analyzed full-disk 2k x 2k observations from the PSPT Precision Solar Photometric Telescope. The data were obtained by using three narrow-band interference filters that sample the Ca II K line with different pass bands. Two filters are centered in the line core, the other in the red wing of the line. We measured the intensity and contrast of various solar features, specifically quiet Sun (inter-network), network, enhanced network, plage, and bright plage (facula) regions. Moreover, we compared the results obtained with those derived from the numerical synthesis performed for the three PSPT filters with a widely used radiative code on a set of reference semi-empirical atmosphere models.Comment: In Proceedings of the 25th NSO Workshop: Chromospheric Structure and Dynamic

    Stray-light restoration of full-disk CaII K solar observations: a case study

    Full text link
    AIMS: We investigate whether restoration techniques, such as those developed for application to current observations, can be used to remove stray-light degradation effects on archive CaII K full-disk observations. We analyze to what extent these techniques can recover homogeneous time series of data. METHODS:We develop a restoration algorithm based on a method presented by Walton & Preminger (1999). We apply this algorithm to data for both present-day and archive CaII K full-disk observations, which were acquired using the PSPT mounted at the Rome Observatory, or obtained by digitization of Mt Wilson photographic-archive spectroheliograms. RESULTS:We show that the restoring algorithm improves both spatial resolution and photometric contrast of the analyzed solar observations. We find that the improvement in spatial resolution is similar for analyzed recent and archive data. On the other hand, the improvement of photometric contrast is quite poor for the archive data, with respect to the one obtained for the present-day images. We show that the quality of restored archive data depends on the photographic calibration applied to the original observations. In particular, photometry can be recovered with a restoring algorithm if the photographic-calibration preserves the intensity information stored in the original data, principally outside the solar-disk observations.Comment: 10 pages; 9 figure

    Plasma flows and magnetic field interplay during the formation of a pore

    Get PDF
    We studied the formation of a pore in AR NOAA 11462. We analysed data obtained with the IBIS at the DST on April 17, 2012, consisting of full Stokes measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI observations in the continuum and vector magnetograms derived from the Fe I 617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic field strength and vector components and the LOS and horizontal motions in the photospheric region hosting the pore formation. We discuss our results in light of other observational studies and recent advances of numerical simulations. The pore formation occurs in less than 1 hour in the leading region of the AR. The evolution of the flux patch in the leading part of the AR is faster (< 12 hour) than the evolution (20-30 hour) of the more diffuse and smaller scale flux patches in the trailing region. During the pore formation, the ratio between magnetic and dark area decreases from 5 to 2. We observe strong downflows at the forming pore boundary and diverging proper motions of plasma in the vicinity of the evolving feature that are directed towards the forming pore. The average values and trends of the various quantities estimated in the AR are in agreement with results of former observational studies of steady pores and with their modelled counterparts, as seen in recent numerical simulations of a rising-tube process. The agreement with the outcomes of the numerical studies holds for both the signatures of the flux emergence process (e.g. appearance of small-scale mixed polarity patterns and elongated granules) and the evolution of the region. The processes driving the formation of the pore are identified with the emergence of a magnetic flux concentration and the subsequent reorganization of the emerged flux, by the combined effect of velocity and magnetic field, in and around the evolving structure.Comment: Accepted for publication in Astronomy and Astrophysic

    Radiative emission of solar features in the Ca II K line: comparison of measurements and models

    Full text link
    We study the radiative emission of various types of solar features, such as quiet Sun, enhanced network, plage, and bright plage regions, identified on filtergrams taken in the Ca II K line. We analysed fulldisk images obtained with the PSPT, by using three interference filters that sample the Ca II K line with different bandpasses. We studied the dependence of the radiative emission of disk features on the filter bandpass. We also performed a NLTE spectral synthesis of the Ca II K line integrated over the bandpass of PSPT filters. The synthesis was carried out by utilizing both the PRD and CRD with the most recent set of semi empirical atmosphere models in the literature and some earlier atmosphere models. We measured the CLV of intensity values for various solar features identified on PSPT images and compared the results obtained with those derived from the synthesis. We find that CRD calculations derived using the most recent quiet Sun model, on average, reproduce the measured values of the quiet Sun regions slightly more accurately than PRD computations with the same model. This may reflect that the utilized atmospheric model was computed assuming CRD. Calculations with PRD on earlier quiet Sun model atmospheres reproduce measured quantities with a similar accuracy as to that achieved here by applying CRD to the recent model. We also find that the median contrast values measured for most of the identified bright features, disk positions, and filter widths are, on average, a factor 1.9 lower than those derived from PRD simulations performed using the recent bright feature models. The discrepancy between measured and modeled values decreases by 12% after taking into account straylight effects on PSPT images. PRD computations on either the most recent or the earlier atmosphere models of bright features reproduce measurements from plage and bright plage regions with a similar accuracy.Comment: 14 pages, 18 figures, accepted by A&

    The center to limb variation of photospheric facular contrast

    Get PDF
    Abstract. The center-to-limb variation (CLV) in the contrast of photospheric faculae is of importance both to the physics of magnetic flux tubes and to the understanding of variations in the total solar irradiance. Measurements of the CLV of faculae are difficult and have resulted in widely disparate results. We tried an accurate measurement of the photospheric facular contrast by using both PSPT and SOHO/MDI observations, with the aim of understanding the reasons of the different results of facular photospheric contrast measurements already presented in literature

    Height dependence of the penumbral fine-scale structure in the inner solar atmosphere

    Get PDF
    We studied the physical parameters of the penumbra in a large and fully-developed sunspot, one of the largest over the last two solar cycles, by using full-Stokes measurements taken at the photospheric Fe I 617.3 nm and chromospheric Ca II 854.2 nm lines with the Interferometric Bidimensional Spectrometer. Inverting measurements with the NICOLE code, we obtained the three-dimensional structure of the magnetic field in the penumbra from the bottom of the photosphere up to the middle chromosphere. We analyzed the azimuthal and vertical gradient of the magnetic field strength and inclination. Our results provide new insights on the properties of the penumbral magnetic fields in the chromosphere at atmospheric heights unexplored in previous studies. We found signatures of the small-scale spine and intra-spine structure of both the magnetic field strength and inclination at all investigated atmospheric heights. In particular, we report typical peak-to-peak variations of the field strength and inclination of ≈300\approx 300 G and ≈20∘\approx 20^{\circ}, respectively, in the photosphere, and of ≈200\approx 200 G and ≈10∘\approx 10^{\circ} in the chromosphere. Besides, we estimated the vertical gradient of the magnetic field strength in the studied penumbra: we find a value of ≈0.3\approx 0.3 G km−1^{-1} between the photosphere and the middle chromosphere. Interestingly, the photospheric magnetic field gradient changes sign from negative in the inner to positive in the outer penumbra.Comment: 14 page, 9 figures, accepted for Ap
    • …
    corecore