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ABSTRACT

Present-day semi-empirical models of solar irradiance (SI) variations employ spectra computed on one-dimensional

atmosphere models (1D models) representative of various solar surface features to reconstruct SI changes measured
on timescales greater than a day. Various recent studies have, however, pointed out that the spectra synthesized on

1D models do not reflect the radiative emission of the inhomogenous atmosphere revealed by high-resolution solar

observations. We aimed to derive observational-based atmospheres from such observations and test their accuracy for

SI estimates. We analysed spectro-polarimetric data of the Fe I 630 nm line pair on photospheric regions representative
of the granular, quiet Sun pattern (QS) and of small- and large-scale magnetic features, both bright and dark with

respect to the QS. The data were taken on 2011 August 6, with the CRISP at the Swedish Solar Telescope, under

excellent seeing conditions. We derived atmosphere models of the observed regions from data inversion with the SIR

code. We studied the sensitivity of results to spatial resolution and temporal evolution, and discussed the obtained

atmospheres with respect to several 1D models. The atmospheres derived from our study agree well with most of the
compared 1D models, both qualitatively and quantitatively (differences are within 10%), but for pore regions. Spectral

synthesis computations on the atmosphere obtained from the QS observations return SI between 400 nm and 2400 nm

that agrees, on average, within 2.2% with standard reference measurements, and within -0.14% with the SI computed

on the quiet Sun atmosphere employed by the most advanced semi-empirical model of SI variations.
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1. INTRODUCTION

The Solar Irradiance (SI) is the fundamental source

of energy entering the Earth’s system. Accurate knowl-

edge of its variations is thus crucial to understand the

externally driven changes to the system, and, in partic-
ular, to the regional and global Earth’s climate (see e.g.

Haigh 2007; Solanki et al. 2013). Regular monitoring of

the total SI (TSI1) and of the spectral SI (SSI) in the ul-

traviolet (UV), carried out since 1978 with satellite mea-

surements, has shown that the SI varies on timescales
from tens of seconds to decades, and on all spectral

bands. In particular, available measurements show TSI

variations of ≈0.1% in phase with the 11-yr solar cy-

cle, and of up ≈0.3% on the timescales of solar rota-
tion. It is worth noting that, on the whole, 30-60% of

the TSI variations over the solar cycle are produced at

UV wavelengths (Lean et al. 1997; Krivova et al. 2006)

that, over the same period, change up to 100% and even

more (e.g. Fröhlich 2013; Rottman 2006; Kopp 2016, and
references therein). UV SSI variations can have a sig-

nificant impact on the Earth’s climate system. Indeed,

the SSI below 400 nm takes an active part in governing

the chemistry and dynamics of the Earth’s upper strato-
sphere and mesosphere, by affecting production, dissoci-

ation, and heating processes of ozone, oxygen and other

components; this also implies changes in winds and at-

mospheric circulation (e.g. Solanki et al. 2013, and ref-

erences therein).
In order to accurately estimate effects of SI variations

on the Earth’s system, climate models require long and

precise series of SI data. Due to short duration and diffi-

cult calibration of the available measurements, satellite
records however still suffer uncertainties, e.g. on the TSI

trends measured on timescales longer than the 11-yr cy-

cle and on the SSI changes occurring at some spectral

bands (Ermolli et al. 2013; Solanki et al. 2013). In ad-

dition to improve our understanding of the physical pro-
cesses responsible for the measured SI changes, precise

models of SI can also support the analysis of the exist-

ing SI records for Earth’s climate studies, by allowing to

interpret, complement, and extend available data series.
Models that ascribe variations in SI at timescales

greater than a day to solar surface magnetism are partic-

ularly successful in reproducing existing SI observations

(e.g. Domingo et al. 2009). There are two classes of such

models, called proxy and semi-empirical (Ermolli et al.
2013; Yeo et al. 2014a,b). The former class of SI models

1 The spectrally integrated solar radiative flux incident at the

top of Earth’s atmosphere at the mean distance of one astronom-

ical unit.

combine proxies of solar surface magnetic features using

regressions to match observed TSI changes. The proxies

most frequently used are the photometric sunspot in-

dex and the chromospheric Mg II index, to describe the
sunspot darkening and facular brightening, respectively.

The semi-empirical SI models reproduce SI variations by

summing up the contributions to SI of the different fea-

tures observed on the solar disc in time. For each time

and observed feature, they employ the surface area and
position covered by the feature at the given time, and

its time-invariant brightness as a function of wavelength

and position on the solar disc. The latter quantity is

calculated from the spectral synthesis performed under
some assumptions on semi-empirical, one-dimensional,

plane-parallel, static atmosphere models (hereafter 1D

models) representative of the observed feature (see, e.g.

Ermolli et al. 2013; Yeo et al. 2014a,b). Examples of

the 1D models employed in SI reconstructions are the
ones presented by Vernazza et al. (1981), Fontenla et al.

(1993, 1999, 2009, 2011, 2015), Kurucz (1993, 2005), and

Unruh et al. (1999).

Present-day, most advanced semi-empirical SI mod-
els (e.g. SATIRE-S, Yeo et al. 2014b) replicate more

than 95% of the TSI variability measured over cy-

cle 23 and most of the SSI changes detected on ro-

tational timescales, especially between 400 and 1200

nm. Despite the excellent match of modeled to mea-
sured SI, current semi-empirical SI models still need

improvements to overcome some limitations due to

e.g. application of free parameters and of simplify-

ing assumptions. Besides, from computations of the
radiative transfer (RT) in atmospheres resulting from

magneto-hydrodynamic simulations, it was shown that

“a one-dimensional atmospheric model that reproduces

the mean spectrum of an inhomogeneous atmosphere

necessarily does not reflect the average physical prop-
erties of that atmosphere and is therefore inherently

unreliable” (Uitenbroek & Criscuoli 2011). This casts

doubts on the accuracy of 1D models employed in SI

reconstructions, particularly to account for the radiant
properties of the small-scale features observed on the

solar disc (Uitenbroek & Criscuoli 2011; Criscuoli 2013;

Yeo et al. 2014a,b).

In this paper, we derive atmosphere models of various

solar photospheric features from inversion of spectro-
polarimetric observations, and discuss the results ob-

tained with respect to the 1D models most widely em-

ployed in SI reconstructions, and other 1D models de-

rived from spectro-polarimetric data. In the following
sections we describe the observations and data analysed

in our study, and the methods applied (Sect. 2). Then

we present the results derived from the data inversion
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(Sect. 3) and discuss them with respect to 1D models

in the literature (Sect. 4). Finally, we investigate the

accuracy of using the obtained models in SI reconstruc-

tions (Sect. 5), discuss the results obtained from our
study and draw our conclusions (Sect. 6).

2. DATA AND METHODS

2.1. Observations

The data analysed in our study were acquired on 2011

August 6, from 07:57 UT to 10:48 UT, with the CRisp

Imaging Spectropolarimeter (CRISP, Scharmer et al.

2008) at the Swedish 1-m Solar Telescope (SST,
Scharmer et al. 2003). They consist of full-Stokes

spectro-polarimetric measurements derived from a 30

wavelengths scan of the photospheric Fe I doublet, from

630.12 nm to 630.28 nm, over a field-of-view (FOV) of

≈57×57 arcsec2, at three disc positions. The 30 wave-
lengths spectro-polarimetric scans were taken with a

cadence of 28 s and a spectral sampling of ≈0.0044 nm.

The above data are complemented with simultaneous

and co-spatial chromospheric broadband images taken
at the core of the Ca II H line at 396.9 nm; in this study,

these data were employed to check our identification

of the bright magnetic regions described in the follow-

ing. The observations were assisted by the adaptive

optics system of the SST (Scharmer et al. 2003), under
excellent seeing conditions.

The pixel scale of the analysed observations is ≈0.059

arcsec/pixel. The polarimetric sensitivity of the anal-

ysed data, which was estimated as the standard devia-
tion of the Stokes Q, U, and V profiles in the contin-

uum, is <3.3×10−3 of the continuum intensity for all

the Stokes parameters.

The observations targeted a quiet Sun (QS) region

at disc center, the active region (AR) NOAA 11267
(AR1) consisting of two sunspots of opposite polar-

ity at disc position [S17, E24, cosine of the heliocen-

tric angle µ=0.84], and a mature spot in AR NOAA

11263 (AR2) at disc position [N16, W43, µ=0.76]. The
data of the three above regions were also analysed

by Stangalini et al. (2015), Cristaldi et al. (2014), and

Falco et al. (2016), respectively. More details about the

analysed observations can be found in the above papers.

The observations were processed with the standard re-
duction pipeline (CRISPRED, de la Cruz Rodŕıguez et al.

2015), to compensate data for the dark and flat-field re-

sponse of the CCD devices, and for instrument- and

telescope-induced polarisations. They were also re-
stored for seeing-induced degradations, by using the

Multi-Object Multi-Frame Blind Deconvolution tech-

nique (MOMFBD, van Noort et al. 2005, and references

therein).

We analysed all the data available for the three ob-

served regions, that means series of 79, 101, and 117 se-

quences of measurements taken over 47, 37, and 56 min-

utes for the QS, AR1, and AR2 regions, respectively. We
extracted sub-arrays (hereafter referred to as subFOV)

of 100×100 pixels representative of quiet Sun regions

(QS), small-scale bright magnetic regions such as bright

points and network (BPs), large-scale, bright regions

with strong magnetic field as plages (PL), small-scale
and large-scale dark magnetic regions as pores (PO) and

umbrae (UM), respectively. Each analysed subFOV rep-

resents a ≈6×6 arcsec2 region on the solar disc. This

region is of the same order as the elementary area con-
sidered when identifying bright and dark solar features

in full-disc observations employed in semi-empirical SI

models. Indeed, the spatial resolution of analysed data

ranges from ≃ 8 to 1 arcsec, for earlier ground-based

and more recent space-borne observations.
Figure 1 shows examples of the QS, AR1, and AR2

observations analysed in our study. For each region,

we show the measured continuum intensity and signed

circular polarization (CP) maps. The latter quantity has
been computed, following Requerey et al. (2014), as:

CP =
1

10〈Ic〉

10
∑

i=1

ǫiVi

ǫ = [+1,+1,+1,+1,+1,−1,−1,−1,−1,−1]

where 〈Ic〉 is the continuum intensity averaged over the
subFOV, V is the Stokes-V profile and i runs over the

10 spectral points closer to the core of the Fe I line at

630.25 nm. In the weak field regime, the CP can be

considered as a proxy for the longitudinal component
of the magnetic field (Landi Degl’Innocenti & Landolfi

2004).

The red boxes in the various panels of Fig. 1 show

the subFOVs considered in the following to represent

the physical properties of QS, BPs, PL, PO, and UM
regions. The blue boxes in the middle panels of Fig. 1

show two more PL regions also analysed in our study

and discussed in Sect. 5.

2.2. Semi-empirical 1D atmosphere models

To the purpose of discussing the results derived from
the above observations, we analyzed several sets of

1D models presented in the literature. In particu-

lar, we considered the atmosphere model presented by

Vernazza et al. (1981) to represent QS regions (VAL-C),
and the sets of models by Fontenla et al. (1993, 1999,

2006, 2011, 2015) to describe various solar features,

from the faint granular cell interior (FAL-A) and aver-

age cell (FAL-C) in QS, to network (FAL-E), enhanced
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Figure 1. Example of the observations and subFOVs analysed in our study. Continuum image (left) and circular polarization
map (right) of the studied QS (top), active region AR1 (middle) and mature-spot AR2 (bottom). The red boxes in each panel
show the inverted subFOVs, representative of unmagnetized (quiet, QS), bright points (BPs), plage (PL), pore (PO), and umbral
(UM) regions, labelled 1, 2, 3, 4, and 5, respectively. Blue boxes in AR1 mark two more plage regions (labeled 4a and 4b) also
analysed in our study and discussed in Sect. 5.

network (FAL-F), plage (FAL-H), bright plage (FAL-

P), penumbral (FAL-R), and umbral (FAL-S) regions.

These latter models are employed in e.g. the SRPM
semi-empirical SI reconstructions (Fontenla et al. 2015,

and references therein). Notice that the Fontenla et al.

(2015) models are neither discussed nor displayed in the

following, since their difference with respect to previ-
ous models by Fontenla et al. (2011) is not apprecia-

ble at the scale of the plots and at the range of at-

mospheric heights considered in our study. We also

analysed other available 1D models obtained from in-

version of spectro-polarimetric observations. In particu-
lar, we considered the SOLANNT and SOLANPL flux-

tube models by Solanki (1986) and Solanki & Brigljevic

(1992) for network and plage regions, respectively, and

the COOL and HOT models by Collados et al. (1994)
for large and small spots, in the order given; all these

models are available in the SIR code described below.

Finally, we tested the results derived from our study also

with respect to the Harvard-Smithsonian Reference At-
mosphere (HSRA, Gingerich et al. 1971) and the model

by Maltby et al. (1986) for average QS regions, and the

M-model by Maltby et al. (1986) for spots. Table 1 sum-

marises all the 1D models analysed in our study.
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Table 1. 1D atmosphere models considered for comparison.

Model label Reference Atmosphere model Observed region

HSRA Gongerich et al. (1971) average quiet Sun QS

VAL-C Vernazza et al. (1981) average quiet Sun QS

Maltby Maltby et al. (1986) quiet Sun QS

FAL-(A, C)-93 Fontenla et al. (1993) faint cell interior, average cell interior QS

FAL-(A, C)-99 Fontenla et al. (1999) faint cell interior, average cell interior QS

FAL-(C)-06 Fontenla et al. (2006) quiet Sun cell interior QS

FAL-(A, B)-11 Fontenla et al. (2011) dark QS internetwork, QS internetwork QS

FAL-(A, B)-15 Fontenla et al. (2015) network, enhanced network, plage, bright plage BPs, PL

FAL-(F, P)-93 Fontenla et al. (1993) network, enhanced network, plage, bright plage BPs, PL

FAL-(E, F, H, P)-99 Fontenla et al. (1999) network, bright network, plage, bright plage BPs, PL

FAL-(E, F, H, P)-06 Fontenla et al. (2006) network, active network, plage, bright plage BPs, PL

FAL-(D, F, H, P)-11 Fontenla et al. (2011) network, enhanced network, plage, bright plage BPs, PL

FAL-(D, F, H, P)-15 Fontenla et al. (2015) QS network lane, enhanced network, plage, very bright plage BPs, PL

SOLANNT Solanki (1986) network PL

SOLANPL Solanki et al. (1992) plage PL

COOL Collados et al. (1984) cool (large) spot PO, UM

HOT Collados et al. (1984) hot (small) spot PO, UM

Maltby-M Maltby et al. (1986) umbral core PO, UM

FAL-S-99 Fontenla et al. (1999) umbra PO, UM

FAL-(S, R)-06 Fontenla et al. (2006) umbra, penumbra PO, UM

FAL-(S, R)-11 Fontenla et al. (2011) umbra, penumbra PO, UM

FAL-(S, R)-15 Fontenla et al. (2015) umbra, penumbra PO, UM

2.3. Stokes inversions

We performed full-Stokes spectro-polarimetric local

thermodynamic equilibrium (LTE) inversions of the

available data for the selected subFOVs with the SIR

code (Stokes Inversion based on Response functions,

Ruiz Cobo & del Toro Iniesta 1992; Bellot Rubio 2003).
We applied the code simultaneously to measurements of

the Fe I lines at 630.15 nm and 630.25 nm, by excluding

from the calculation the Stokes-I measurements in the

red wing of the Fe I line at 630.25 nm affected by telluric
blends. The SIR code utilizes the atomic parameters

taken from the VAL-D database (Piskunov et al. 1995).

For each analysed subFOV, we first normalized the mea-

surements to the average continuum intensity measured

on a nearby QS region, defined as the region with CP

signal lower than 3 times the standard deviation of the

entire CP map.

We performed the data inversion by considering: a)

the mean spectra obtained from the spatial-average of

the Stokes measurements taken over each analysed sub-
FOV, and b) the individual Stokes measurements in each

pixel of the analysed subFOV. In the latter case, we then

spatially-averaged the results from the data inversion of

the subFoV. These two methods are hereafter referred
to as SA and FR, respectively; in the figures, results

from SA and FR are labelled (a) and (b), respectively.

When applying SA, the spatial information in the anal-

ysed data is lost to the advantage of an increased signal-

to-noise ratio of the Stokes data to be inverted. When
applying FR, the analysis takes advantage of the full

spatial resolution of the analysed observations. The SA

and FR computations were applied to investigate the
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HSRA (a)
VALC (a)
FAL-C-99 (a)
OBS (a)

     

Figure 2. Top panel: Stokes-I spectra from measurements
(OBS) of QS regions and those from SA data inversion using
different starting guess models, specifically the HSRA, VAL-
C, and FAL-C-99 models. Bottom panel: relative difference
between synthetic and observed spectra.

HSRA (a)
VALC (a)
FAL-P-99 (a)
OBS (a)

     

Figure 3. As in Fig. 2 but for measurements (OBS) and SA
data inversion results concerning the PL region. The HSRA,
VAL-C, and FAL-P-99 models have been tested here as guess
models.

effects due to analysis method on the obtained results,
and to spatial inhomogeneities due to smaller-scale fea-

tures in the observed atmosphere. SA and FR compu-

tations were applied to all analysed subFOVs. Besides,

for the PO data, the SA and FR computations were
also applied by considering only the pixels belonging to

the dark region in the subFoV. In particular, we analy-

sed the pixels characterized by Ic <0.4, where Ic is the

normalized continuum intensity. In the figures, results

from these latter calculations are labeled (a)-dark and

(b)-dark, respectively.

We inverted the data by assuming that the modeled

atmosphere consists of one component with physical
quantities that do not vary with atmospheric height, but

temperature. This assumption is justified by the lack of

asymmetries in the analysed line profiles, which mani-

fest the presence of more than one atmosphere in the

analysed resolution element or gradients in some physi-
cal parameters. Moreover, our assumption is also based

on our aim of comparing the obtained results with 1D

models mostly constructed from spatially unresolved ob-

servations.
We performed the data inversion by applying two

computational cycles. In the first cycle, the temper-

ature was allowed to vary within 2 nodes, while the

other quantities, specifically the line-of sight (LOS)

velocity, the magnetic field strength, the field incli-
nation and azimuth, and the microturbulent velocity

were assumed to be constant with height. In the sec-

ond cycle, we slightly increased the degrees of freedom,

by allowing the temperature to vary within 3 nodes.
According to Ruiz Cobo & del Toro Iniesta (1992) and

Socas-Navarro (2011), the slight increase of nodes in the

second cycle helps the code to improve convergence of

calculation and to obtain a more stable solution. Since

we performed one-component inversions, the magnetic
filling factor is unity. We set the height-independent

macroturbulent velocity to 2 km/s. Besides, we mod-

eled the stray-light contamination on the data by aver-

aging Stokes-I computed on subFOV regions with low
polarization degree, which was defined as:

Π ≡
Ipol

I
=

√

Q2 + U2 + V 2

I

We performed the data inversion by using vari-

ous initial guess models. In particular, we consid-

ered the HSRA and models by Vernazza et al. (1981),

Maltby et al. (1986), Fontenla et al. (1993, 1999),
Solanki (1986), and Collados et al. (1994), as well as

some their modified versions. Based on the best fitting

and minimal residual between observed and inverted

profiles, we assumed the following starting guess mod-

els: for QS data, we adopted the HSRA; for BPs and PL
data, we employed the same model but modified with a

constant magnetic field strength value of 200 G and 800

G, respectively; for PO and UM data, we assumed the

HOT and COOL models proposed by Collados et al.
(1994). We modified these latter models by keeping

the magnetic field strength constant with height and

assigning 2000 G and 2500 G to the HOT and COOL

model, respectively.
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It is worth noting that the SIR code performs the data

inversion under LTE assumption. Although almost all

the Fe I lines show deviation from LTE conditions, it

was shown (Shchukina & Trujillo Bueno 2001) that lines
synthesized under LTE conditions do not sensitively dif-

fer from the ones obtained under NLTE, especially if iron

abundance is lower than 7.50±0.10 dex, as it was in our

calculations (7.46 dex).

Figures 2 and 3 show examples of results obtained
by using the different starting guess models when in-

verting QS and PL data. In particular, the top panel

of each figure shows the observed Stokes-I spectra and

the synthetic ones derived from SA inversion with the
various tested models. The bottom panel of each fig-

ure shows the relative difference between synthetic and

observed profiles, expressed in percentage values. With

the guess models employed in our study (with the worse

guess models tested in our study), for QS and BPs re-
gions these residuals are within ±1% (6%); for PO and

UM regions they are within ±4% (6%), and for the PL

regions within ±3% (10%).

3. RESULTS

3.1. Atmospheric models

Figure 4 shows examples of the atmospheric models re-

turned by the data inversion of the various observed re-
gions. Each panel displays horizontal cuts at logτ500=0,

with τ500 representing the continuum optical depth at

500 nm. For each region, we show maps of various phys-

ical parameters: temperature, magnetic field strength,
gas density, and LOS velocity.

Temperature values in all maps range from 3500 to

6800 K, the lowest value found in the UM and the high-

est one in PL and QS regions. Magnetic field strength

reaches 200 G in QS areas, with higher values located
within intergranular lanes; in BPs region, it ranges from

0 to 800 G; in PL and PO regions from 0 to 1200 G and

from 400 to 2000 G, respectively; inside the UM region

from 1800 to 3200 G.
The LOS velocity in the maps ranges from -2 to 1 km

s−1 in QS, from -1.5 to 1.5 km s−1 in BPs, from -2 to

2 km s−1 in PL, and from -0.8 to 0.8 km s−1 in the PO

and UM regions. For these latter regions, we show the

velocity field with respect to the plasma velocity in QS
regions. Regions characterized by highest magnetic field

strengths, such as central PO and UM regions, and inter-

granular lanes visible in the QS, display highest density

values, as expected when looking at lower geometrical
heights due to the higher magnetic field concentration.

Figure 5 shows horizontal cuts of the plasma temper-

ature in the various observed regions at four different

heights, specifically at logτ500=0, -1.5, -2, -2.5. The var-

ious panels display plasma temperatures that decrease

with atmospheric height for all the analysed regions.

Top panels show the reversed granular pattern already

at atmospheric height logτ500=-1. The same applies to
the pattern of BPs, and to less extent also to pattern of

PL regions.

3.2. Response Functions and uncertainty

In order to assess the range of atmospheric heights

in which the analysed data are sensitive to tem-

perature perturbations, thus to specific properties

of the observed atmosphere, we computed the so-
called response functions (RFs, e.g. Caccin et al. 1977;

Landi Degl’Innocenti & Landi Degl’Innocenti 1977) by

applying the mathematical procedure described in

Socas-Navarro (2011). Figure 6 shows the RFs based on

the results of the SA inversion of QS data, i.e. inversion
of data averaged over the studied subFOV, normalized

to the maximum value. For a given Stokes parameter,

optical depth, and wavelength, RFs values close to unity

indicate that the corresponding Stokes-parameter mea-
surements are quite responsive to perturbations of the

line-forming atmosphere, while low or null RFs values

point out that the Stokes-measurements are unaffected

by atmospheric inhomogeneities of temperature and

fields. This implies that the data inversion cannot pro-
vide reliable information about the physical quantities

in the line-forming atmospheric regions characterized

by low RFs values; these regions lie outside the sen-

sitivity range of analysed data. Figure 6 shows that,
for the observations considered in our study, the sensi-

tivity range spans from logτ500=0 to logτ500=-3. The

variation of the emergent intensity due to temperature

perturbations is always positive: the emergent intensity

increases both in the continuum and in the line core,
with most of the contribution to the analysed spectra

coming from the continuum.

Following Socas-Navarro (2011), we also computed the

uncertainty in the atmosphere models derived from the
data inversion, by weighting the average of the tem-

perature stratification (T (τ), hereafter) obtained from

the inversion at each observed spectral point by the

above estimated RFs. Figure 7 shows the uncertainty

estimated for the T (τ) derived from the five inverted
subFOVs. This uncertainty is as low as ∼15 K be-

tween logτ500=0 and logτ500=-3, i.e. the range of at-

mospheric heights in which the data inversion returns

more reliable results. The uncertainty of data inversion
results increases at higher atmospheric heights and be-

low logτ500=0, up to 50 K and 200 K, respectively, as

well as with decreasing the spatial scale of the magnetic

feature represented by the inverted subFOV.
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Figure 4. From left to right, top to bottom: horizontal cuts of the temperature, magnetic field strength, plasma density, and
LOS velocity at logτ500=0 on the atmosphere models derived from inversion of the QS, BPs, PL, PO, and UM regions. White
and black contours mark the PO region considered to compute the average temperature profiles labeled (a) and (b) in Fig. 10.

3.3. Temperature stratification

We compared the T (τ) derived from the data inversion

of the various studied regions to the ones described by
the several 1Dmodels listed in Table 1. We here consider

results obtained from inversion of data taken at best

seeing conditions for each analysed region and for both

the SA and FR computations.
Figure 8 (top panel) shows this comparison for QS

data. Dashed- and solid-black lines display the T (τ)

obtained from SA and FR, labelled (a) and (b), respec-

tively. Coloured lines correspond to the 1D models em-

ployed for comparison as specified in the legend. Grey-
shaded area represents the 1σ confidence interval of data

inversion results. Figure 8 (bottom panel) shows the rel-

ative difference between the T (τ) derived from the ob-

servations and the one in a 1D model used as reference,
specifically the FAL-C-99 model.

The panels in Figs. 9 and 10 show the same content

as Fig. 8, but based on the results obtained from the

inversion of the BPs, PL, PO, and UM observations.
The bottom part in each panel shows the relative dif-

ference between the T (τ) derived from the observations

and the one in the 1D model used as reference, which is

the FAL-(F, P, S)-99 to represent network, plage, and

umbral regions, respectively; we also analysed the FAL-
R-06 model for penumbral regions.

Concerning the PO data, we considered results from

SA and FR computations on the image pixels with
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Figure 5. From left to right, top to bottom: horizontal cuts of the temperature at four different heights, specifically at
logτ500=0, -1.5, -2, -2.5, derived from the inversion of the QS, BPs, PL, PO and UM data. See caption of Fig. 4 for more
details.

Ic <0.4 (labeled (a)-dark and (b)-dark, respectively),

and over the whole subFOV (labeled (a) and (b), re-

spectively). We then estimated the relative difference

between the T (τ) computed over the whole subFOV and
the FAL-R-06, as well as between the T (τ) computed

over the image pixels with Ic <0.4 and the FAL-S-99.

Figures 8, 9, and 10 show that the various T (τ) de-

rived from the data inversion agree quite well with those

in most of the compared models, both qualitatively and
quantitatively, but for PO observations. The agreement

between compared models decreases outside the sensi-

tivity range defined by the RFs; we recall, however,

that outside the sensitivity range the physical quanti-
ties returned by the data inversion are uncertain. For

all studied regions, the T (τ) obtained from SA and FR

computations slightly differ. We discuss this difference

in the following and mostly focus here on results from

FR computations only.

At logτ500=0, the average of the temperature values
obtained from the inversion of the QS, BPs, PL, UM

data agree with those in the FAL-(C, F, P, S)-99 mod-

els within the deviation of results on the analysed sub-

FOV, being the average and standard deviation of values

6383±132 K, 6397±132 K, 6427±132 K, and 3998±150
K with respect to the values 6520 K, 6520 K, 6502 K,

4170 K in the FAL-(C, F, P, S)-99 models, respectively.

At same atmospheric height, the value of the plasma

temperature estimated by the inversion of PO data is
5147±109 K, ∼1000 K higher and ∼1100 K lower than

the values envisaged in the FAL-S-99 and FAL-R-06
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Figure 7. Temperature uncertainties for each analysed re-
gion, as specified in the legend.

models, respectively. The relative difference between

our T (τ) derived from analysis of the whole subFOV

and the FAL-R-06 model is less pronounced; the T (τ)

of the FAL-R-06 model lies within the deviation of val-

ues derived from our analysis, in the atmospheric range
between logτ500=-0.5 and logτ500=-2.

Within logτ500=-1 and logτ500=-3, i.e. from the mid-

dle to the high photosphere, the T (τ) returned from

the observations of QS, BPs, PL, and UM regions
agree within ∼10% with all the T (τ) in the models

by Fontenla et al. (1999) employed for comparison, but

with slightly different results for the various compared

sets; for QS, BPs, and UM regions, the agreement is

QS (a)
QS (b)

HSRA
MALTBY
VALC
FAL-A-93
FAL-C-93
FAL-A-99
FAL-C-99
FAL-C-06
FAL-A-11
FAL-B-11

    

Figure 8. Top: Comparison among the T (τ ) of several 1D
models (coloured lines, as specified in the legend) and in the
model derived from the inversion of the QS observations.
Grey-shaded area represents the 1σ confidence interval of
data inversion results. Dashed and solid, black lines refer to
the T (τ ) retrieved from the SA and FR computations, la-
belled (a) and (b), respectively. Bottom: Relative difference
between the T (τ ) retrieved from the data inversion and that
in the FAL-C-99 model. The horizontal, dashed line marks
zero values of these differences; vertical, dashed lines in both
panels mark the sensitivity range defined by the RFs.

within 5%, while for the PL regions within 10%. Over-

all, most of the T (τ) derived from the data inversion are

slightly lower than the ones in the compared 1D models

in the middle photosphere (about 100 K at logτ500=-
1) and slightly higher in upper layers (about 150 K at

logτ500=-3) and below logτ500=0 (about 200-400 K), but

for the UM data, which show lower plasma tempera-

tures (down to ≃700 K) below logτ500=0 than those dis-
played by all compared models, and the PL data which

exhibit lower values (about 50−100 K) above logτ500=-

2.5, than all other models. In particular, the T (τ) ob-

tained from QS and BPs data are, on average, up to

∼100 K lower than in the corresponding FAL-C-99 and
FAL-F-99 models, respectively. In the range between

logτ500=0 and logτ500=-2, i.e. in the lower and middle

photosphere, the T (τ) obtained from PL data is, on av-

erage, up to ∼400 K lower than represented in the corre-
sponding FAL-P-99 model. On the other hand, at these

atmospheric heights, the T (τ) from PO observations is

up to ∼1000 K higher than reported by the FAL-S-99

model; for the UM data, it is close (within ∼50-100 K)
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Figure 9. As in Fig. 8 but for data representative of small-
scale (BPs, top) and large-scale (PL, bottom) bright mag-
netic regions. The relative difference is computed with re-
spect to the temperature stratification of the FAL-F-99 (top)
and the FAL-P-99 (bottom) models. See caption of Fig. 8
for more details.

to that described in the FAL-S-99 model, but it is ∼150-

200 K lower at logτ500=0 and logτ500=-3.
All the atmosphere models derived from the obser-

vations exhibit higher plasma temperatures at higher

atmospheric heights than those represented by the ear-

lier HSRA and VAL-C models, except for the model de-

PORE (a)
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PORE (b)-dark 
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Figure 10. As in Fig. 8 but for data representative of
dark magnetic regions, PO (top) and UM (bottom). For PO
data, labels (a) and (b) refer to the T (τ ) computed over the
whole subFOV, while labels (a)-dark and (b)-dark refer to
the T (τ ) over the region with Ic <0.4. The relative difference
is computed with respect to the temperature stratification
of the FAL-R-06 (dot-dashed and long-dashed lines) and the
FAL-S-99 (solid and dashed lines) models, respectively. See
caption of Fig. 8 and Sect. 3 for more details.
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rived by the PL data. Besides, the T (τ) obtained from

BPs and PL data also do not reproduce the temper-

ature enhancement represented in the SOLANNT and

SOLANPL models, neither considering SA, nor FR re-
sults. The T (τ) from SA analysis of PL data most

closely follows the FAL-P-93 and FAL-H-99 models.

Atmosphere models derived from observations seem

to reproduce better former models by Fontenla et al.

(1993, 1999) than more recent sets by Fontenla et al.
(2006, 2011), at least in the lower photosphere up to

logτ500=-2, and mainly for QS and BPs regions. The

opposite seems to occur in upper atmospheric layers,

where however the level of confidence of our data inver-
sion results is lower.

3.4. Effects of spatial averaging and temporal evolution

Figures 8, 9 and 10 show slight differences between the
T (τ) obtained from SA and FR computations, i.e. the

spatially-averaged and fully-resolved observations. In

Fig. 11 we quantify this difference, by showing relative

percentage values between the T (τ) obtained under the
two computations applied; for PO regions we also show

results from analysis of image pixels with Ic <0.4. At

logτ500=0, the difference between T (τ) obtained from

SA and FR lies within 1% for all the analysed regions.

For PO and UM data, the difference is within 2% at all
the investigated atmospheric heights, if we restrict our

analysis to image pixels with Ic <0.4.

Within logτ500=0 and logτ500=-3, i.e. from the lower

to the higher photosphere, for QS, BPs, and PL regions,
the T (τ) computed from SA on the whole subFoV has up

to 6% higher values than obtained from FR, while for the

PO the T (τ) has up to ≃6% lower values; for UM, the

T (τ) computed from SA on the whole subFOV has only

up to 2% higher values than obtained from FR. There-
fore, the results obtained from bright and dark magnetic

regions are affected by the method applied similarly, but

the sign for PO observations; this holds if the analysed

data are characterized by a spatial resolution of ≈5-6
arcsec as considered in our study.

The above results indicate that the method ap-

plied affects less the modeled atmosphere in homo-

geneous magnetic regions. This is in agreement

with Uitenbroek & Criscuoli (2011), who showed that
spatially-averaging the properties of an inhomogeneous

atmosphere returned from MHD simulations and evalu-

ating physical quantities after the averaging operation,

does not give the same result as estimating the physical
quantities in the inhomogeneous atmosphere and then

averaging it.

We also investigated the possible effects due to the

temporal evolution of the observed features on the ob-
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PLAGE

    

    

PORE

    

UMBRA

Figure 11. From top to bottom: Relative difference be-
tween the average T (τ ) obtained from analysis of fully-
resolved (FR) and spatially-averaged (SA) results from in-
version of the QS, BPs, PL, PO, and UM data. The blue
line in the panel of PO data shows results obtained by con-
sidering only image pixels with Ic <0.4.

tained results, and other possible processes occurring

on the analysed regions (waves, seeing, etc.). To this

purpose, we analysed inversion results derived from SA
computations on the whole series of data available for
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Figure 12. From top to bottom: T (τ ) obtained from the
analysis of the whole series of available QS, BPs, PL, PO, and
UM observations. Each temporal step in the observational
series is shown with different colour. Error bars indicate
the standard deviation of values with respect to the T (τ )
averaged over the whole time series, shown with black, solid
line.

each observed region. In Fig. 12 we show the T (τ) de-

rived from the inversion of all averaged Stokes spectra

for each observed region. The T (τ) retrieved from anal-

ysis of each observation available for the studied region
is displayed with different colours. The T (τ) averaged

over the whole time series is displayed as a solid, black

line with error bars representing the 1σ confidence in-

terval; this interval is larger for QS and PO regions.

Figure 12 shows that the dispersion of results due to the
effects of the temporal evolution of the studied region

and other possible processes lies within the confidence

interval of results estimated for all the analysed regions.

This finding proves that the results presented in Sects.
3.1-3.3 can be assumed to be quite representative of the

studied regions, at least for the dataset considered in

our study.

4. COMPARISON WITH RESULTS IN THE

LITERATURE

The literature presents a number of atmosphere mod-

els derived from inversion of spectro-polarimetric data
acquired with both ground-based and space-borne in-

struments. We now discuss the T (τ) derived from our

analysis with respect to those reported by former stud-

ies of QS, PL, and UM regions. We focus on the models

presented since year 2000, and derived from analysis of
data taken with similar characteristics, in terms of spa-

tial and spectral resolution, than the ones considered in

our study.

Borrero & Bellot Rubio (2002) presented a two-
components model of the quiet solar photosphere, repre-

sentative of typical granular and intergranular regions,

derived from inversion performed with the SIR code

on the intensity of 22 Fe I lines, observed at the Fourier

Transform Spectrometer (FTS) installed at the McMath
telescope of the Kitt Peak Observatory. The data con-

sist of 1579 spectral points that sample the 22 selected

Fe I lines at intervals of 6 mÅ. At logτ500=0, the plasma

temperature derived from our analysis of the QS obser-
vations is comparatively close to the values in both their

models, with relative differences of ∼100 K. Given that

the granular component is statistically predominant in

QS regions, we expect that our QS model, which was

obtained without distinguishing between the two com-
ponents considered by Borrero & Bellot Rubio (2002),

is closer to their model for the granular region than the

one for intergranular areas. Indeed, our T (τ) from FR

computations lies close to that in their granular model
at all the optical depths; values are within the deviation

of results on our analysed subFOV.

Socas-Navarro (2011) inverted full-Stokes spectro-

polarimetric observations of a QS region observed at the
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Fe I line pair at 630 nm with the slit spectro-polarimeter

onboard the Hinode satellite, by using the NICOLE code

(Socas-Navarro et al. 2015) that allows inversions under

non-LTE (NLTE) conditions. The observed FoV was
close to disc center. The data consist of three consecu-

tive scans of 315 slit positions on the FoV, each position

with 112 wavelength samples of the Fe I line pair taken

with ≃21 mÅ sampling. The inversion was performed

on a sub-array of about 30×30 arcsec2, 200×200 pixels
wide. The retrieved average temperature stratifica-

tion was compared to the HSRA and the model by

Asplund et al. (2004), which resulted to be warmer in

the middle layers compared to the model presented in
Socas-Navarro (2011) and cooler upwards; it is very

close to that obtained from our analysis of FR QS data,

but for the elbow at logτ500=-1 that is not found neither

in our results, nor in the HSRA model. The uncertain-

ties derived from RFs by Socas-Navarro (2011) exhibit
a similar trend than the ones derived from our study, at

least for image pixels with continuum brightness close to

the average of the whole observed region. For those pix-

els, the uncertainties estimated by Socas-Navarro (2011)
are lower than 50 K in the middle atmospheric layers,

up to logτ500=-3.4, and reach values up to more than

500 K in the upper layers. These values are sensitively

higher than those derived from our study.

Bellot Rubio et al. (2000) analysed averaged Stokes-
I and Stokes-V spectra of the Fe I line pair at 630

nm emerging from a facular region observed at µ=0.96

with the slit Advanced Stokes Polarimeter (ASP) at the

Sacramento Peak Observatory. The observations, which
covered a FoV of about 110×90 arcsec2, were taken in al-

most 20 minutes. The spatial resolution of the acquired

data was ≃1-3 arcsec and the spectral sampling was ≃13

mÅ. The analyzed data consist of averaged Stokes pro-

files constructed by accounting for the contribution of
all pixels within facular regions whose degree of polar-

ization was lower than 0.4%. The model they presented

for the central part of the studied region is hotter than

the model we obtained from the PL data, ∼500 K hot-
ter at logτ500=0. Our T (τ) better agrees with the one

reported by Bellot Rubio et al. (2000) for plage outly-

ing regions. However, the T (τ) obtained from our study

agrees with their results within the standard deviation

of values in our studied subFOV.
Buehler et al. (2015) analysed the full-Stokes spectra

of a plage region observed at the Fe I line pair at 630

nm with the slit spectro-polarimeter aboard the Hinode

mission, by using the revised version of the SPINOR in-
version code (Frutiger et al. 2000) that allows to account

for the instrumental point-spread-functions (van Noort

2012). The observations covered a FoV of about 50×150

arcesec2, acquired with a spatial resolution of ≃0.32 arc-

sec and spectral sampling of ≃21 mÅ over about 5 min-

utes. The T (τ) they reported for core regions, defined as

the image pixels with magnetic field strength decreasing
with height and absolute value >1000 G, shows compar-

atively higher values (up to ∼600 K) than obtained from

our study; their values are closer to the empirical plage

flux-tube model derived by Solanki & Brigljevic (1992),

at least up to logτ500=-1, compared to ours. Neverthe-
less, the results they obtained for the average temper-

ature of pixels representative of QS and magnetic field

concentrations at logτ500=0, -0.9, -2.3 are in good agree-

ment with the ones we obtained from the inversion of
QS and PL data, within the deviation of results in the

analysed subFOV.

Westendorp Plaza et al. (2001) studied full-Stokes

spectra taken at the Fe I line pair at 630 nm on a sunspot

region with the slit ASP, by using the SIR code. They
computed the RFs of Stokes-V to the perturbation of

the magnetic field strength, and deduced a sensitivity

range spanning between logτ500=0 and logτ500=-2.8, in

good agreement with our estimation of the sensitivity
range of the studied data. They also derived the con-

fidence limits for the retrieved stratification of physical

parameters from the computation of RFs, and verified

that the errors obtained were in good agreement with

Monte Carlo simulations. Their estimated formal errors
are comparable to, but sligthly larger than our com-

puted uncertainties for results from the PO and UM

data.

Analysis of key aspects of the studies described
above shows that our work benefits from a higher

spectral and spatial resolution of the analysed

observations, and a wider dataset taken under

excellent seeing conditions than considered in all

previous studies. We also discuss our results
with respect to a significantly larger set of 1D

models than earlier presented in the literature.

Besides, within the computational uncertainty

of results, all findings derived from our study
are consistent with results of the above earlier

works. Thus, the results derived from our study

can reasonably be assumed to represent the anal-

ysed regions.

5. APPLICATION TO SI STUDIES

The set of 1D models employed in semi-empirical SI

reconstructions is of pivotal importance to reproduce
measured SI variations accurately (see e.g. Ermolli et al.

2013). It is thus interesting to test the accuracy of the

observational-based atmosphere models derived from

our study for possible application in SI models.
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Figure 13. Top panel: SI from 200 to 2400 nm calculated
with our spectral synthesis performed on the QS and FAL-
C-99 atmospheres representative of quiet Sun regions and
measured reference data by Thuillier et al. (2004). Middle
and bottom panels: relative difference between the SI de-
rived from the synthesis on the QS (middle) and FAL-C-99
(bottom) atmospheres with respect to the reference data. SI
data are given in [W m−2 nm−1] units. All spectra were
convolved with a 1 nm Gaussian kernel to account for the
spectral resolution of available measurements in the visible
range. The solid lines in middle and bottom panels show rel-
ative differences between the data convolved with a 10 nm
Gaussian Kernel. Vertical lines mark the UV, NUV, Vis, and
NIR bands.

In order to provide a preliminary assessment of such
accuracy, we computed the radiative flux emerging from

our observational-based atmospheres and compared it

with the one resulting from other 1D models employed

in semi-empirical SI models, and with other available

data that are described below. We performed the spec-
tral synthesis for the wavelength range from 200 to 2400

nm on the various analysed atmospheres with the one-

dimensional version of the RH code (Uitenbroek 2001),

which solves the RT and statistical equilibrium equa-
tions under general NLTE conditions. We computed the

emergent spectrum with a 0.01 nm spectral resolution

at nine lines of sight, spaced according to the zeroes of

the Gauss-Legendre polynomials as a function of µ. We

then convolved the spectra derived from the synthesis
with a Gaussian kernel 1 nm wide, to roughly account

for the spectral resolution of the SI data considered for

comparison.

We applied standard NLTE RH computations, which
consider contributions of Thomson scattering by free
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Figure 14. Top panel: SI from 200 to 2400 nm derived from
our spectral synthesis performed on the QS atmosphere, cal-
culated with the Kurucz quiet Sun model employed in the
SATIRE-S SI model, and given by the WHI reference data
considered in the NLRSSI SI model. Middle and bottom
panels: relative difference between the SI derived from the
synthesis on the QS atmosphere (middle) and considered in
the NRLSSI model (bottom) with respect to the one cal-
culated with the Kurucz quiet Sun model employed in the
SATIRE-S. See caption of Fig. 13 for more details.

electrons, Rayleigh scattering by neutral hydrogen and

helium atoms, and H2 molecules. Other background
opacity sources included were bound-free and free-free

transitions of H− and neutral hydrogen, free-free transi-

tions of H2 and bound-free transitions of different met-

als. The synthesis was performed by computing popula-

tions of several atoms2 and of more than 10 molecules3.
We assumed the atomic line data from Kurucz4.

Figure 13 (top panel) shows the SI spectra derived

from the synthesis performed on the QS and FAL-C-99

models representative of quiet Sun regions, compared
to the ATLAS-3 reference spectrum by Thuillier et al.

(2004); Figure 13 (middle and bottom panels) display

the relative difference of the synthesized spectra with

respect to the above reference data. The ATLAS-3 is a

composite solar spectrum derived from analysis of vari-
ous available measurements; it is considered a standard

reference for SSI covering the UV (200 to 300 nm), near

UV (NUV, 300 to 400 nm), visible (Vis, 400 to 700

2 Including H, C, O, Si, Al, Ca, Fe, He, Mg, Na, N, S.
3 Including H2, H

+
2 , C2, N2, O2, CH, CO, CN, NH, NO, OH,

SiO, LiH, MgH.
4 kurucz.harvard.edu
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Figure 15. Relative difference between the SI spectra de-
rived from our synthesis on the QS and FAL-C-99 atmo-
spheres, and computed with the Kurucz quiet Sun model
employed in the SATIRE-S, with respect to the reference
data from Thuillier et al. (2004) and WHI by Woods et al.
(2009), the latter considered in the NRLSSI model. See cap-
tion of Fig. 13 and Sect. 5 for more details.

nm) and near IR (NIR, 700 to 2400 nm) spectral re-

gions. In the Vis and NIR bands, the median (standard

deviation) relative difference between the SI spectrum
derived from our QS atmosphere and reference data

is ≃0.8% (4%) and -3% (1.9%), respectively; the me-

dian (standard deviation) relative difference between the

compared spectra, however, increases up to 13% (14%)

and 85% (>100%) in the NUV and UV regions, respec-
tively. In the Vis and NIR bands, the median (standard

deviation) relative difference between the SI spectrum

derived from our synthesis on the FAL-C-99 model and

reference data is ≃6% (4%) and -0.3% (2%), respec-
tively; the median (standard deviation) relative differ-

ence between these compared spectra increases up to

22% (17%) and 140% (>100%) in the NUV and UV

regions, respectively.

Other available spectra from SI models show relative
difference with respect to the ATLAS-3 data such as

those reported above. Among the various models de-

veloped to reproduce the SI variability, we considered

the ones most representative of the two classes intro-
duced in Sect. 1, the proxy NRLSSI model (Lean 2000;

Coddington et al. 2016) and semi-empirical SATIRE-S

model (e.g. Yeo et al. 2014a,b, and references therein).

Figure 14 (top panel) shows the SI spectrum derived

from our synthesis performed on the QS atmosphere,
compared to the SI spectrum computed with the Ku-

rucz quiet Sun model and to the WHI reference data by

Woods et al. (2009), which give the quiet Sun spectrum

in the SATIRE-S and NRLSSI SI models, respectively.

Figure 14 (middle and bottom panels) display the rel-
ative difference between the SI spectrum from the QS

atmosphere and the WHI data, with respect to the SI

spectrum calculated with the Kurucz quiet Sun model,

which is employed in the SATIRE-S, the present-day,

most-advanced semi-empirical SI model. The SI spec-
trum derived from the QS atmosphere (described by

WHI) shows median relative difference to the spectrum

computed on the Kurucz atmosphere model of ≃34%,

6% 0.7%, -0.6% (-32%, -11 %, -0.2%, 3%) in the UV,
NUV, Vis, NIR bands, respectively.

In order to highlight the main features of the SI data

compared above, we also show in Fig. 15 the relative

difference between the various available spectra with re-

spect to the ATLAS-3, after spectral convolution of the
data with a Gaussian kernel 10 nm wide, in order to

display average trends over the various spectral regions.

In the Vis, the agreement among the compared spec-

tra is very good, ranging from -0.14% (Kurucz model
in SATIRE-S) to 6% (FAL-C-99) for all the data anal-

ysed; median relative difference is 0.8%, 6%, -0.1% -0.3%

for QS, FAL-C-99, Kurucz, and WHI, respectively. In

the NUV range, such agreement decreases to ≃13% and

22% for our QS and FAL-C-99 computations, while it
decreases only to ≈-6% and 6% for the data consid-

ered in the NRLSSI and SATIRE-S models. It is worth

nothing that these latter models estimate the time- and

wavelength-dependent contribution to SI from bright
and dark magnetic features in quite different ways, but

both apply intensity offsets and some scaling in order

that the reconstructed SI spectra match the absolute

levels of some observed reference spectra. Besides, the

spectral synthesis performed in the SATIRE-S assumes
LTE that fails to reproduce the SI below ≃300 nm ac-

curately. Outcomes from the SATIRE-S synthesis are

rescaled to reference data by Woods et al. (2009). In

contrast, the results of the spectral synthesis performed
on our observational-based QS atmosphere and the FAL-

C-99 model shown in Fig. 15 are taken as they are from

our RH calculations, without applying any scaling to im-

prove the match to the reference data by Thuillier et al.

(2004).
We also analysed the spectra derived from the synthe-

sis on the observational-based BPs, PL, PO, and UM

models, with respect to the ones obtained from the syn-

thesis on the FAL-(E, F, H, S)-99 and FAL-R-06 mod-
els. This comparison shows higher relative differences

in the UV than in the other spectral bands. Specifi-

cally, in the UV and NUV, the various spectra differ, on
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Table 2. Spectrally integrated flux from 200 to
2400 nm computed from the observational-based
atmospheres and the FAL-(C, E, F, H, S)-99 and
FAL-R-06 models.

Obs SSI obs Model SSI FAL Rel. diff.

region [W/m2] label [W/m2] [%]

QS 1354.60 C 1416.85 4.6

BP 1404.10 E 1426.06 1.6

PL 1453.55 F 1446.77 -0.5

PL 1453.55 H 1510.46 3.9

PO 624.24 R 1205.53 93

PO 624.24 S 303.36 -51

UM 273.57 S 303.36 11

average, ≃15% and 80% for models of bright and dark

features, respectively; in the Vis (NIR) they differ, on
average, from 0.3 to 2% (0.04 to 1.6%) for models of

bright features, and from 11 to >250% (7 to 60%) for

models of dark features. These differences affect calcu-

lations of the SSI based on the various compared models

as summarised in Table 2. We report in Table 2 the SSI
computed by integrating the various synthesized spectra

from 200 to 2400 nm; we also show the relative difference

between SI computed for models corresponding to same

surface feature. The relative difference between the com-
puted SSI ranges from -0.5% (PL with respect to FAL-

F-99 computations) to 93% (P0 with respect to FAL-R-

06 computations). Apart from these extremes, the best

(worse) agreement between the compared quantities is

found for the SSI computed on the BPs and the FAL-E-
99 atmospheres (PO and FAL-S-99 atmospheres).

It is worth nothing that the values in Table 2 result

from the synthesis performed on the atmosphere models

presented in Sect. 3. In our study, we assumed that
these data represent atmosphere regions employed in SI

reconstructions satisfactorily. However, the subFOVs

analysed in our observations represent only a minute

fraction of the solar disc at a given time, while the so-

lar regions the data are assumed to represent can cover
significant fractions of the solar disc and show differ-

ent brightness in time. For some surface features, the

results derived from our study may not reflect the prop-

erties of the modeled atmosphere accurately. This is
especially the case when rather inhomogenous regions

are considered. For example, we show in Fig. 16 results

from the synthesis performed on the three PL regions
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Figure 16. SI from 200 to 400 nm (top), and from 400 to 700
nm (bottom), derived from the synthesis on the atmosphere
models of three PL regions and BPs area shown in Fig. 1.

marked with red and blue boxes in Fig. 1. The T (τ)

derived from the blue marked regions show slightly dif-

ferent average values than obtained from analysis of the

red marked region. In particular, the T (τ) of the PL re-
gion discussed in Sect. 3 lies between the ones obtained

from the other two analysed PL areas. The SI spectra

derived from the synthesis on the three PL atmospheres

differ on average ≃10%, 5%, and <5% in the UV, NUV,
and Vis ranges, respectively. When entered in SI mod-

els, these differences translate in SSI estimated values

that differ from 1.1% to 2.6%.

The above results encourage us to further in-

vestigate the accuracy of entering atmosphere
models derived from spectro-polarimetric obser-

vations in SI estimates. Indeed, the Vis and

NIR SSI synthesized on the atmosphere model

derived from our QS observations differs on aver-
age from the ATLAS-3 and WHI reference data

less than 2.5%, and -0.14% from the spectrum

computed on the Kurucz quiet Sun atmosphere

employed in the SATIRE-S model. Besides, the

lower agreement reported above for synthesis
results of the NUV and UV bands, below 400

nm, is fully consistent with the limited range of

atmospheric heights sampled by the data anal-

ysed in the present study, which spans from the
low to the high photosphere only, thus limiting

the reliability of our spectral synthesis results

for the SI originating from higher atmospheric

heights. On the other hand, in the 1000 to 2400

nm spectral region, the SI derived from our syn-
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thesis on the QS atmosphere underestimates (-

3.5%±1.5%) the reference data, as a consequence

of the clear SSI drop seen at about 1000 nm.

This drop challenges our synthesis calculations
of the H− opacity for the NIR range. Indeed,

in the same spectral region, results derived from

our synthesis on the FAL-C-99 atmosphere by as-

suming the H population data available for that

model differ, on average, only -0.7% with respect
to the reference. However, it is also worth noting

that several recent NIR SI measurements show

a systematic negative difference (of about 8%)

with respect to the ATLAS-3 reference compos-
ite, see e.g. Weber (2015), in agreement with

our findings.

6. DISCUSSION AND CONCLUSION

We found that the average temperature stratification

derived from the data inversion of the various analysed
regions agrees well with that represented by the cor-

responding 1D model, both qualitatively and quantita-

tively, but for pore data, which exhibits a different trend

at all atmospheric heights compared to the 1D models
representative of umbral regions. This result is not sur-

prising, since previous studies already strengthened the

linear dependence of umbral core brightness on their size

(e.g., Collados et al. 1994; Mathew et al. 2007). These

latter results however suggest that the 1D models em-
ployed in current SI reconstructions, may inaccurately

represent the temperature stratification of dark, mag-

netic regions which are neither spatially extended nor

characterized by strong magnetic fields as typical um-
bral regions. Moreover, such features are not accounted

for in the atmosphere models of dark structures em-

ployed in SI reconstructions. Our results also suggest

that pixel-by-pixel inversion of high-resolution observa-

tions allows to retrieve atmosphere models that possibly
better account for the contribution of the smaller-scale

features in the studied FoV, than obtained from analysis

of less resolved observations. This is particularly inter-

esting, since SI cyclic variations are closely linked to the
evolution of small-scale, strong-field magnetic features.

Our preliminary investigation of the accuracy of po-

tentially entering the various atmosphere models derived

from our study in SI estimates gave encouraging results.

Indeed, the SI spectrum from 400 to 2400 nm synthe-
sized on the atmosphere model derived from our QS ob-

servations differs on average ≃2.2% from the ATLAS-3

reference data by Thuillier et al. (2004), and ≃-0.14%

from the spectrum computed on the Kurucz quiet Sun
atmosphere employed in the SATIRE-S SI model. In

the same spectral range, the median difference between

the quiet Sun spectra considered in the SATIRE-S and

NRLSSI SI models is 2.7%. It is worth recalling that the

NRLSSI is a regression-proxymodel, while the SATIRE-
S is a more physics-based model that includes spectral

synthesis computations. At all wavelengths analysed in

our study, the spectrum derived from the Kurucz atmo-

sphere employed in the SATIRE-S is closer to the one

derived from our QS observations than the spectrum
considered in the NRLSSI SI model.

The results presented above encourage us to refine

our RH calculations on observational-based atmospheres

for potential use in SI models. In particular, the sig-
nificantly lower agreement we found between our syn-

thesis results and reference data in the NUV and UV

bands, than in the Vis and NIR, shows that further

work is needed to improve e.g. some atomic data em-

ployed in our calculations. Besides, to properly enter
synthesis results of observational-based models in SI re-

constructions, a more detailed study is also required to

account for the center-to-limb dependence of the inten-

sity emerging from features observed at different posi-
tions on the solar disc, and for the different brightness

of each magnetic feature depending on the magnetic fill-

ing factor. However, preliminary tests of the accuracy

of the outcomes derived from the present study, by us-

ing data representative of other solar regions that also
cover wider ranges of atmospheric heights than discussed

above, have given promising results that motivate us to

further work for the exploitation of atmosphere models

derived from inversion of spectro-polarimetric observa-
tions in SI reconstructions.
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