1,591 research outputs found

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Benchmark Analysis of EBR-II Protected Loss-of-Flow Transient

    Get PDF
    Coordinated Research Project (CRP) on EBR-II Shutdown Heat Removal Tests (SHRT) was established by International Atomic Energy Agency (IAEA). The objective of the project is to support and to improve validation of simulation tools and projects for Sodium-cooled Fast Reactors (SFR). The Experimental Breeder Reactor II (EBR-II) plant was a uranium metal-alloy-fuelled liquid-metal-cooled fast reactor designed and operated by Argonne National Laboratory (ANL) for the U.S. Department of Energy at the Argonne-West site. In the frame of this project, benchmark analysis of one of the EBR-II shutdown heat removal tests, protected loss-of-flow transient (SHRT-17), has been performed at the Gruppo di Ricerca Nucleare San Piero a Grado (GRNSPG) in Pisa, Italy. The aim of this paper is to present modeling of EBR-II reactor design using RELAP-3D, and to present results of the transient analysis of SHRT-17. Complete nodalization of the reactor was made from the beginning. Model is divided in primary side that contains core, pumps, reactor pool and, for this kind of reactor specific, Z pipe, and intermediate side that contains Intermediate Heat Exchanger (IHX). Core was modeled with 82 channels that represent all fuel assemblies, and 14 channels for reflector and blanket assemblies. After achievement of acceptable steady-state results, transient analysis was performed. Starting from full power and flow, both the primary loop and intermediate loop coolant pumps were simultaneously tripped and the reactor was scrammed to simulate a protected loss-of-flow accident. In addition, the primary system auxiliary coolant pump, that normally had an emergency battery power supply, was turned off. Despite early rise of the temperature in the reactor, the natural circulation characteristics managed to keep it at acceptable levels and cooled the reactor down safely at decay heat power levels. Thermal-hydraulics characteristics and plant behavior was focused on prediction of natural convection cooling by evaluating the reactor core flow and temperatures and their comparison with experimental data that were provided by ANL

    Application of best estimate plus uncertainty in review of research reactor safety analysis

    Get PDF
    To construct and operate a nuclear research reactor, the licensee is required to obtain the authorization from the regulatory body. One of the tasks of the regulatory authority is to verify that the safety analysis fulfils safety requirements. Historically, the compliance with safety requirements was assessed using a deterministic approach and conservative assumptions. This provides sufficient safety margins with respect to the licensing limits on boundary and operational conditions. Conservative assumptions were introduced into safety analysis to account for the uncertainty associated with lack of knowledge. With the introduction of best estimate computational tools, safety analyses are usually carried out using the best estimate approach. Results of such analyses can be accepted by the regulatory authority only if appropriate uncertainty evaluation is carried out. Best estimate computer codes are capable of providing more realistic information on the status of the plant, allowing the prediction of real safety margins. The best estimate plus uncertainty approach has proven to be reliable and viable of supplying realistic results if all conditions are carefully followed. This paper, therefore, presents this concept and its possible application to research reactor safety analysis. The aim of the paper is to investigate the unprotected loss-of-flow transients "core blockage" of a miniature neutron source research reactor by applying best estimate plus uncertainty methodology. The results of our calculations show that the temperatures in the core are within the safety limits and do not pose any significant threat to the reactor, as far as the melting of the cladding is concerned. The work also discusses the methodology of the best estimate plus uncertainty approach when applied to the safety analysis of research reactors for licensing purposes

    Pure Spinor Approach to Type IIA Superstring Sigma Models and Free Differential Algebras

    Full text link
    This paper considers the Free Differential Algebra and rheonomic parametrization of type IIA Supergravity, extended to include the BRS differential and the ghosts. We consider not only the ghosts lambda's of supersymmetry but also the ghosts corresponding to gauge and Lorentz transformations. In this way we can derive not only the BRS transformations of fields and ghosts but also the standard pure spinor constraints on lambda's. Moreover the formalism allows to derive the action for the pure spinor formulation of type IIA superstrings in a general background, recovering the action first obtained by Berkovits and Howe.Comment: 1+23 pages, v2: added clarifications and a reference, misprints corrected, v3: presentation improved, results unchange

    More on integrable structures of superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds

    Get PDF
    In this paper we continue the study, initiated in arXiv:1009.3498 and arXiv:1104.1793, of the classical integrability of Green-Schwarz superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds whose spectrum contains non-supercoset worldsheet degrees of freedom corresponding to broken supersymmetries in the bulk. We derive an explicit expression, to all orders in the coset fermions and to second order in the non-coset fermions, which extends the supercoset Lax connection in these backgrounds with terms depending on the non-coset fermions. An important property of the obtained form of the Lax connection is that it is invariant under Z_4-transformations of the superisometry generators and the spectral parameter. This demonstrates that the contribution of the non-coset fermions does not spoil the Z_4-symmetry of the super-coset Lax connection which is of crucial importance for the application of Bethe-ansatz techniques. The expressions describing the AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superstring sigma--models and their Lax connections have a very similar form. This is because their amount of target-space supersymmetries complement each other to 32=24+8, the maximal number of 10d type II supersymmetries. As a byproduct, this similarity has allowed us to obtain the form of the geometry of the complete type IIA AdS(2) x S(2) x T(6) superspace to all orders in the coset fermions and to the second order in the non-coset ones.Comment: 28 pages; v2: References adde

    Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states

    Full text link
    A supersymmetric string model in the D=11 superspace maximally extended by antisymmetric tensor bosonic coordinates, Σ(52832)\Sigma^{(528|32)}, is proposed. It possesses 30 κ\kappa-symmetries and 32 target space supersymmetries. The usual preserved supersymmetry-κ\kappa-symmetry correspondence suggests that it describes the excitations of a BPS state preserving all but two supersymmetries. The model can also be formulated in any Σ(n(n+1)2n)\Sigma^{({n(n+1)\over 2}|n)} superspace, n=32 corresponding to D=11. It may also be treated as a `higher--spin generalization' of the usual Green--Schwarz superstring. Although the global symmetry of the model is a generalization of the super--Poincar\'e group, Σ(n(n+1)2n)×Sp(n){\Sigma}^{({n(n+1)\over 2}|n)}\times\supset Sp(n), it may be formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We work out this supertwistor realization and its Hamiltonian dynamics. We also give the supersymmetric p-brane generalization of the model. In particular, the Σ(52832)\Sigma^{(528|32)} supersymmetric membrane model describes excitations of a 30/32 BPS state, as the Σ(52832)\Sigma^{(528|32)} supersymmetric string does, while the supersymmetric 3-brane and 5-brane correspond, respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology, some references and comments adde

    Metastable de Sitter vacua in N=2 to N=1 truncated supergravity

    Get PDF
    We study the possibility of achieving metastable de Sitter vacua in general N=2 to N=1 truncated supergravities without vector multiplets, and compare with the situations arising in N=2 theories with only hypermultiplets and N=1 theories with only chiral multiplets. In N=2 theories based on a quaternionic manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable, as a result of the peculiar properties of the geometry. In N=1 theories based on a Kahler manifold and a superpotential, de Sitter vacua can instead be metastable provided the geometry satisfies some constraint and the superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial requirement is then that the tachyon of the mother theory be projected out from the daughter theory, so that the original unstable vacuum is projected to a metastable vacuum. We study the circumstances under which this may happen and derive general constraints for metastability on the geometry and the gauging. We then study in full detail the simplest case of quaternionic manifolds of dimension four with at least one isometry, for which there exists a general parametrization, and study two types of truncations defining Kahler submanifolds of dimension two. As an application, we finally discuss the case of the universal hypermultiplet of N=2 superstrings and its truncations to the dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in such theories are necessarily unstable in weakly coupled situations, while they can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure

    Effects of synchronous music on treadmill running among elite triathletes

    Get PDF
    This is the post-print version of the final paper published in Journal of Science and Medicine in Sport. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Objectives: Music can provide ergogenic, psychological, and psychophysical benefits during physical activity, especially when movements are performed synchronously with music. The present study developed the train of research on synchronous music and extended it to elite athletes. Design: Repeated-measures laboratory experiment. Method: Elite triathletes (n = 11) ran in time to self-selected motivational music, a neutral equivalent and a no-music control during submaximal and exhaustive treadmill running. Measured variables were time-to-exhaustion, mood responses, feeling states, RPE, blood lactate concentration, oxygen consumption and running economy. Results: Time-to-exhaustion was 18.1% and 19.7% longer, respectively, when running in time to motivational and neutral music, compared to no music. Mood responses and feeling states were more positive with motivational music compared to either neutral music or no music. RPE was lowest for neutral music and highest for the no-music control. Blood lactate concentrations were lowest for motivational music. Oxygen consumption was lower with music by 1.0%–2.7%. Both music conditions were associated with better running economy than the no-music control. Conclusions: Although neutral music did not produce the same level of psychological benefits as motivational music, it proved equally beneficial in terms of time-to-exhaustion and oxygen consumption. In functional terms, the motivational qualities of music may be less important than the prominence of its beat and the degree to which participants are able to synchronise their movements to its tempo. Music provided ergogenic, psychological and physiological benefits in a laboratory study and its judicious use during triathlon training should be considered.QAS Centre of Excellence for Applied Sport Science Researc

    Volcanic monitoring of the 2021 LaPalma eruption using long‑period magnetotelluric data

    Full text link
    Between September and December 2021, the frst subaerial volcanic eruption in the Canary Islands in 50 years took place on the island of La Palma. Since November 2021, we have been conducting a long-period magnetotelluric (MT) monitoring experiment at a site located 2.4 km east of the volcanic cone. Having continuously recorded data since then, the obtained dataset shows signifcant changes in resistivity over the fourteen months following the eruption: more than± 20% in apparent resistivity and± 2 degrees in phase. These temporal variations in electrical resistivity, recorded continuously using long-period MT during both the syn- and post-eruptive stages, have not been reported to date, making this dataset unique. Four estimated impedances have been selected as representatives of the major temporal changes observed and inverted to generate new 3-D resistivity models. The results provide novel key information on the spatiotemporal evolution of the subsoil’s electrical resistivity, enabling the characterization of a set of structures acting as preferred magmatic fuid pathways. Therefore, our study highlights the strong potential of MT as a volcanic monitoring tool and provides new insights about the evolution of the fuid pathways during the post-eruptive stage. These fndings enhance our understanding of the magmatic system and may contribute to volcanic hazard mitigation in the future

    Optical response of a misaligned and suspended Fabry-Perot cavity

    Full text link
    The response to a probe laser beam of a suspended, misaligned and detuned optical cavity is examined. A five degree of freedom model of the fluctuations of the longitudinal and transverse mirror coordinates is presented. Classical and quantum mechanical effects of radiation pressure are studied with the help of the optical stiffness coefficients and the signals provided by an FM sideband technique and a quadrant detector, for generic values of the product ϖτ\varpi \tau of the fluctuation frequency times the cavity round trip. A simplified version is presented for the case of small misalignments. Mechanical stability, mirror position entanglement and ponderomotive squeezing are accommodated in this model. Numerical plots refer to cavities under test at the so-called Pisa LF facility.Comment: 14 pages (4 figures) submitted to Phys. Rev.
    corecore