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and
b INFN, Sezione di Padova, via F. Marzolo 8, 35131 Padova, Italia

c Department of Theoretical Physics, the University of the Basque Country UPV/EHU,

P.O. Box 644, 48080 Bilbao, Spain

and

IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

dGeorge P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,

Texas A&M University, College Station, TX 77843, USA

Abstract

In this paper we continue the study, initiated in [1, 2], of the classical integrability of
Green–Schwarz superstrings in AdS4×CP 3 and AdS2×S2×T 6 superbackgrounds whose
spectrum contains non–supercoset worldsheet degrees of freedom corresponding to broken
supersymmetries in the bulk. We derive an explicit expression, to all orders in the coset
fermions and to second order in the non–coset fermions, which extends the supercoset
Lax connection in these backgrounds with terms depending on the non–coset fermions.
An important property of the obtained form of the Lax connection is that it is invariant
under Z4–transformations of the superisometry generators and the spectral parameter.
This demonstrates that the contribution of the non–coset fermions does not spoil the
Z4–symmetry of the super–coset Lax connection which is of crucial importance for the
application of Bethe–ansatz techniques. The expressions describing the AdS4 ×CP 3 and
AdS2 × S2 × T 6 superstring sigma–models and their Lax connections have a very similar
form. This is because their amount of target–space supersymmetries complement each
other to 32 = 24+8, the maximal number of 10d type II supersymmetries. As a byproduct,
this similarity has allowed us to obtain the form of the geometry of the complete type IIA
AdS2 × S2 × T 6 superspace to all orders in the coset fermions and to the second order in
the non–coset ones.
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1 Introduction

In this paper we continue the study of the classical integrability of Green–Schwarz super-
strings in AdS4 × CP 3 and AdS2 × S2 × T 6 superbackgrounds, whose spectrum contains
non–supercoset worldsheet degrees of freedom, initiated in [1, 2].

The integrability properties of superstrings on semi–symmetric coset superspaces G/H
with Z4–grading are, by now, very well understood. The prescription for constructing a Lax
representation of the equations of motion of 2d sigma–models on the supercoset G/H (that
generates an infinite set of conserved charges) has been proposed in [3] and applied to various
concrete examples [4] including the maximally supersymmetric type IIB AdS5×S5 superstring

whose target superspace is PSU(2,2|4)
SO(1,4)×SO(5) and an OSp(6|4)

SO(1,3)×U(3) sigma–model [5, 6] which is a
kappa–symmetry gauge–fixed sub–sector of the Green–Schwarz superstring on a type IIA
AdS4×CP 3 superspace [7]. Other examples of interest, in particular in the AdS/CFT context,
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are string sigma–models on PSU(1,1|2)×PSU(1,1|2)
SU(1,1)×SU(2) whose bosonic body is the 6d symmetric space

AdS3 × S3 and on D(2,1;α)×D(2,1;α)
SO(1,2)×SO(3)×SO(3) having AdS3 × S3 × S3 as its bosonic subspace [8].

These cases are related to 10d superstrings compactified on AdS3 × S3 × M4 (where M4 is
T 4 or S3 × S1) that preserve 16 target–space supersymmetries. Another example, which we

will consider here, is a superstring on the coset superspace PSU(1,1|2)
SO(1,1)×U(1) with the 4d bosonic

subspace AdS2 × S2 and eight supersymmetric Grassmann–odd directions. This model is a
consistent truncation of a 10d Green–Schwarz superstring on AdS2 ×S2×T 6 or AdS2×S2×
CY 3 (see [2] for more details and references). It is useful to have a supercoset description
which captures the full 10d bosonic geometry of AdS2 × S2 × T 6 rather than a truncation
to 4d. This can be achieved by noting that AdS2 × S2 × R

6, with eight fermionic directions,
is described by the supercoset PSU(1,1|2)⋊E(6)

SO(1,1)×U(1)×SO(6) , where the semi-direct product with E(6),

the Euclidean group in six dimensions, accounts for the R
6 factor. Since AdS2 × S2 × T 6 is

locally the same as AdS2 ×S2×R
6, and we will only be interested in the local geometry, this

gives us a (local) supercoset description of AdS2 × S2 × T 6.
Among the above examples only the AdS5 ×S5 superstring is maximally supersymmetric

in the 10d target space. Its number of supersymmetries and corresponding string fermionic
modes is 32 coinciding with the number of Grassmann–odd directions of PSU(2,2|4)

SO(1,4)×SO(5) . In

other words, all the worldsheet fermionic modes of the AdS5 × S5 string are in one to one
correspondence with the Grassmann directions of the supercoset space which fully describes
the supergeometry of the type IIB AdS5 × S5 supergravity solution. As a consequence, the
prescription of [3] for the construction of a zero–curvature Lax connection from the Z4–graded

components of the Cartan form on PSU(2,2|4)
SO(1,4)×SO(5) demonstrates the classical integrability of

the full Green–Schwarz superstring in the AdS5 × S5 superbackground which coincides with
PSU(2,2|4)

SO(1,4)×SO(5) .
Other, less supersymmetric, cases turn out to be more involved. For instance, the Green–

Schwarz superstring on AdS4×CP 3 is invariant under 24 target–space supersymmetries that
generate the superisometry group OSp(6|4). The type IIA superspace, in which the string

moves, has 32 fermionic directions while the supercoset OSp(6|4)
SO(1,3)×U(3) only has 24. This means

that only 24 of the 32 fermionic modes on the string worldsheet can be associated with the
supercoset Grassmann–odd directions, while the 8 remaining fermionic modes (corresponding
to broken target–space supersymmetries) do not have this group–theoretical meaning. In fact,
the complete type IIA AdS4×CP 3 superspace is not a supercoset, though it has the OSp(6|4)
isometries. Its geometry is much more complicated and reduces to that of OSp(6|4)

SO(1,3)×U(3) only
in the sub–superspace in which the 8 non–supersymmetric fermionic coordinates are put to
zero [7]. In the Green–Schwarz superstring sigma–model on AdS4 × CP 3 superspace these
eight non–supercoset fermionic modes can be put to zero by partially gauge fixing the kappa–
symmetry for almost all classical configurations of the string. This however is not possible
when the string motion is restricted to the AdS4 subspace [5, 7] or when the string forms
a worldsheet instanton by wrapping a CP 1 cycle in CP 3 [9]. In these cases the supercoset
kappa–symmetry gauge is inadmissible, and the non–coset fermions carry physical worldsheet
degrees of freedom.1 As a result, the construction of a Lax connection of the Green–Schwarz
superstring in the full AdS4 ×CP 3 superspace, in general, should include the contribution of
the non–coset fermions which will thus modify the form of the supercoset Lax connection of

1Subtleties of gauge fixing kappa-symmetry in a way consistent with the light–cone gauge in a near plane–
wave limit of AdS4 ×CP 3 has been discussed in [10].

2



[5, 6] by terms whose structure is not captured by the prescription of [3].
The situation becomes even more interesting and complicated in less supersymmetric

cases such as strings on AdS3 × S3 × M4 and AdS2 × S2 × T 6. For instance, as we have
already mentioned, in AdS2 × S2 × T 6 only 8 target–space supersymmetries corresponding
to the Grassmann–odd directions of PSU(1,1|2)⋊E(6)

SO(1,1)×U(1)×SO(6) are preserved and hence the other 24
fermionic modes of the Green–Schwarz superstring cannot be associated with the supercoset.
Moreover, since there are only 16 kappa–symmetries, they can gauge away not more than
16 of these fermions, so that at least 8 of the non–coset worldsheet fermions carry physical
degrees of freedom and will always contribute to the structure of the Lax connection of the
complete 10d theory.

To deal with the non–coset fermions, an alternative prescription for constructing Lax
connections has been proposed in [1]. It uses the Noether currents of the isometries of the
(super)background as building blocks of the Lax connection and can thus be applied to more
general cases than the G/H sigma–models with Z4–grading. Using this procedure, zero–
curvature Lax connections for superstrings on AdS4 × CP 3 and AdS2 × S2 × T 6 have been
constructed up to second order in the 32 fermionic modes, respectively, in [1] and [2]. In
addition, in [1] a Lax connection to all orders in non–coset fermions has been constructed in a
special kappa–symmetry gauge of [11] in the sub–sector of the AdS4×CP 3 superstring which

cannot be reduced to the OSp(6|4)
SO(1,3)×U(3) supercoset, thus providing evidence for the classical

integrability of the complete theory.
When the non–coset fermions are put to zero, the Lax connections of [1, 2] are related to

those of [3, 4, 5, 6] (truncated to the second order in the coset fermions) by a superisometry
gauge transformation that depends on the spectral parameter [1]. To understand how the
presence of the non–coset fermions modifies e.g. the algebraic curve constructed with the use
of the Z4–graded supercoset Lax connection and, hopefully, to reveal a role of the non–coset
fermionic and bosonic modes in the corresponding Bethe–ansatz techniques, it seems useful
to have at hand an explicit expression which demonstrates how the Z4–graded supercoset Lax
connection gets generalized by terms depending on the non–coset fermions. In this paper we
provide such an expression for the Lax connections of the superstring on AdS4 × CP 3 and
AdS2×S2×T 6 to all orders in the coset fermions and up to the second order in the non–coset
fermions. Interestingly enough, the Lax connections of the AdS4 ×CP 3 and AdS2 × S2 × T 6

superstrings have formally a very similar form. This is because their numbers of target–
space supersymmetries complement each other to 32 = 24 + 8, the maximal number of 10d
type II supersymmetries, and the projectors which split 32–component fermions into 24– and
8–component ones are the same in both of the cases.

This similarity actually has helped us to guess the form of the AdS2 × S2 × T 6 Lax
connection upon having constructed the AdS4×CP 3 one using the knowledge of the complete
AdS4 × CP 3 supergeometry and the superstring equations of motion. As a byproduct, this
has also allowed us to get corrections due to the non–coset fermions to the geometry of the

PSU(1,1|2)⋊E(6)
SO(1,1)×U(1)×SO(6) supercoset thus obtaining the form of the geometry of the complete type

IIA AdS2×S2×T 6 superspace to all orders in the coset fermions and to the second order in the
non–coset ones. These results make explicit the general discussion of [2] about the structure

of the AdS2 × S2 × T 6 supergeometry which ensures that the PSU(1,1|2)
SO(1,1)×U(1) sigma–model is a

consistent truncation of the complete 10d superstring action on AdS2 × S2 × T 6.
An important property of the obtained form of the Lax connection is that it is invariant

under the Z4 transformations of the superisometry generators provided that the spectral
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parameter x gets replaced with its inverse 1
x
. This demonstrates that the contribution of

the non–coset fermions does not spoil the Z4–symmetry of the supercoset Lax connection
which is of crucial importance for the Bethe ansatz equations, both classical and quantum
[12, 13, 8, 14].

The paper is organized as follows.
In Section 2 we explain our conventions and notation and describe some general properties

of the supercoset Lax connection, and the relation of its zero curvature condition to the
equations of motion of the corresponding 2d dynamical system.

In Section 3 we extend the supercoset Lax connection with contributions coming from the
string fermionic modes associated with broken targetspace supersymmetries. In Section 3.1
we sketch the construction of the Lax connection of the AdS4×CP 3 superstring starting from
that of the OSp(6|4)

SO(1,3)×U(3) sigma–model and modifying it with terms containing the non–coset

fermions (which we call υ) in such a way that the zero–curvature condition is satisfied order
by order in υ if the worldsheet fields obey the superstring equations of motion.

In Section 3.2 we pass to the consideration of the AdS2 × S2 × T 6 case and assume that
its Lax connection has a similar form to that of the AdS4 × CP 3 superstring but with the
role of the coset and non–coset fermions interchanged and with an appropriate redefinition
of the form of the gamma–matrices involved in the construction. We then require that this
Lax connection has zero curvature, derive from this condition the equations of motion of the
AdS2 × S2 × T 6 superstring and reconstruct the geometry of its target superspace. Namely,
we find the bosonic and fermionic vielbeins, the spin connection and the NS–NS three–form
superfield strength of the AdS2×S2×T 6 superspace to all orders in the fermions parametrizing
the supercoset PSU(1,1|2)⋊E(6)

SO(1,1)×U(1)×SO(6) and to the second order in the non–coset fermions.
In Section 4 we demonstrate that the obtained Lax connections are invariant under the

Z4–transformations and discuss their relation to conserved currents and the Lax connections
constructed in [1, 2].

In the Conclusions we discuss open problems, possible generalizations and applications of
the results obtained.

2 Setting the stage

2.1 Main notation and conventions

We use the metric with the ‘mostly plus’ signature (−,+, · · · ,+). Generically, the tangent
space vector indices are labelled by letters from the beginning of the Latin alphabet, while
letters from the middle of the Latin alphabet stand for curved (world) indices. The spinor
indices are labelled by Greek letters from the beginning of the alphabet, while their curved
(world) counterparts are denoted by letters from the middle of the Greek alphabet.

The bosonic coordinates of the ten–dimensional type IIA target superspace in which the
string moves are denoted by XM (M = 0, 1, · · · , 9) and the Grassmann–odd coordinates are
denoted by Θµ (µ = 1, · · · , 32). Since we consider the string sigma–model we shall always
assume that XM and Θµ depend on the string worldsheet variables ξi = (τ, σ).

The geometry of the target superspace is encoded in the form of the vector EA(X,Θ) and
spinor Eα(X,Θ) supervielbeins, and spin connection ΩAB(X,Θ). In the string sigma–model
these one–forms are pulled back on the string worldsheet, which will always be implicit in what
follows, e.g. EA(X,Θ) = dξi(∂iX

MEMA(X,Θ) + ∂iΘ
µEµA(X,Θ)). The 10d supergeometry is

4



subject to the basic torsion constraint which we choose to be

TA ≡ dEA + EBΩB
A = −iEΓAE + iEA Eλ+

1

3
EA EB ∂B φ (2.1)

and the NS–NS three–form superfield strength is constrained as in [11]

H = −iEA EΓAΓ11E + iEBEA EΓABΓ11λ+
1

3!
ECEBEA HABC , (2.2)

where λα(X,Θ) is the dilatino superfield, φ(X,Θ) is the dilaton and ∂A = EAM∂M + EAµ∂µ.
The dilatino superfield is not independent but is proportional to the spinor derivative of the
dilaton [15]

λα = − i

3
∂α φ := − i

3

(

EαM∂Mφ+ Eαµ∂µφ
)

. (2.3)

The matrices EAM , EAµ, etc. in the definition of ∂A and ∂α are the inverse supervielbeins.
We shall consider classical superstrings in AdS4 × CP 3 and AdS2 × S2 × T 6 superback-

grounds of type IIA supergravity. As we will see many expressions turn out to be very similar
which allows us to treat both cases simultaneously. Nevertheless, strings in the AdS2×S2×T 6

superbackground of type IIB supergravity can also be treated in a similar fashion with only
slight modifications of our formulas due to the same chirality of the 10d Majorana–Weyl
spinors (see [2]).

AdS4 ×CP3 is parametrized by the AdS4 coordinates xm (m = 0, 1, 2, 3) and the CP 3

coordinates ym
′

(m′ = 4, 5, 6, 7, 8, 9). The vielbeins along AdS4 are ea(x) = dxm em
a(x)

(a = 0, 1, 2, 3) and along CP 3 are ea
′

(y) = dym
′

em′
a′(y). The 10d vielbein is then eA(XM ) =

(ea(x), ea
′

(y)).
The AdS4 curvature is

Rab
cd =

8

R2
δc[a δ

d
b] , Rab = − 4

R2
ea eb , (2.4)

where R is the CP 3 radius or twice the AdS4 radius, and the CP 3 curvature is

Ra′b′
c′d′ = − 2

R2
(δc

′

[a′ δ
d′

b′] + J[a′
c′ Jb′]

d′ + Ja′b′J
c′d′) , (2.5)

where Ja′b′ is the Kähler form on CP 3.

AdS2 × S2 ×T6 is parametrized by the AdS2 coordinates xm (m = 0, 1), the S2 coordi-
nates xm̂ (m̂ = 2, 3) and those of T 6 ym

′

(m′ = 4, 5, 6, 7, 8, 9). The corresponding vielbeins
are ea = dxm em

a(x) (a = 0, 1), eâ = dxm̂ em̂
â(x̂) (â = 2, 3) and ea

′

(y) = dya
′

. We will often
combine the AdS2 and S2 indices into a = (a, â) = 0, 1, 2, 3.

The AdS2 curvature is

Rab
cd =

8

R2
δc[a δ

d
b] , Rab = − 4

R2
ea eb , (2.6)

where R is twice the AdS2 (or S2) radius, and the S2 curvature is

Râb̂
ĉd̂ = − 8

R2
δĉ[â δ

d̂
b̂]
, Râb̂ =

4

R2
eâ eb̂ . (2.7)
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The 10d curvature of AdS4 × CP 3 and AdS2 × S2 × T 6 is denoted by RAB
CD.

The D = 10 gamma–matrices satisfy

{ΓA, ΓB} = 2ηAB , ΓA = (Γa, Γa′) , a = 0, 1, 2, 3 a′ = 4, · · · , 9 . (2.8)

We also define

γ5 = iΓ0123,

γ7 = iΓ456789,

Γ11 = γ5γ7 , (2.9)

all of which square to one. The charge conjugation matrix is denoted C. The matrices C,
CΓÂB̂Ĉ and CΓÂB̂ĈD̂ are anti-symmetric while CΓÂ, CΓÂB̂ and CΓÂB̂ĈD̂Ê are symmetric,

where the indices are eleven dimensional, Â = (A, 11).
Finally we introduce a spinor projection matrix P8 which singles out an 8–dimensional

subspace of the 32–dimensional space of spinors

P8 =
1

8
(2− iJa′b′Γ

a′b′γ7) , (2.10)

where Ja′b′ is the Kähler form on CP 3 or T 6. The complementary projection matrix which
singles out a 24–dimensional subspace is then

P24 = 1− P8 =
1

8
(6 + iJa′b′Γ

a′b′γ7) . (2.11)

Some useful identities satisfied by the gamma matrices and these projectors are given in
Appendix D.

In the AdS4 × CP 3 case P24 singles out from Θα 24 fermionic coordinates

ϑ = P24Θ

corresponding to the unbroken supersymmetries and, hence, to the Grassmann–odd directions
of the supercoset OSp(6|4)

SO(1,3)×U(3) , while the remaining eight

υ = P8Θ

are non–supercoset fermions.
In AdS2 × S2 × T 6 the role of the two projectors gets exchanged. P8 singles out from Θα

8 fermionic coordinates
ϑ = P8Θ

corresponding to the unbroken supersymmetries and, hence, to the Grassmann–odd directions
of the supercoset PSU(1,1|2)⋊E(6)

SO(1,1)×U(1)×SO(6) , while the remaining twenty four

υ = P24Θ

are non–supercoset fermions.
To treat the two cases simultaneously we shall always denote the coset fermions by ϑ and

the non–coset ones by υ. The projector which singles out the coset fermions will be denoted
by P, namely

ϑ = PΘ, υ = (1− P)Θ. (2.12)
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Let us note that as solutions of the type IIA supergravity equations of motion the AdS4×
CP 3 and AdS2 × S2 × T 6 backgrounds also contain non–zero constant Ramond–Ramond F2

and F4 fluxes which are implicitly encoded in the form of the projectors (2.10) and (2.11),
namely

/F = −8i

R
Pγ⋆, (2.13)

where

/F = eφ
(

−1

2
ΓABΓ11FAB +

1

4!
ΓABCDFABCD

)

and γ⋆ stands for γ5 in the AdS4 ×CP 3 case and for Γ01γ7 in the AdS2 × S2 × T 6 case. The
explicit form of the RR fluxes can be found e.g. in [7] and [2]2.

2.2 Superstring action and equations of motion

The Green–Schwarz superstring action in a general supergravity background [16], written in
terms of worldsheet differential forms, is

S = −T

2

∫

Σ
∗EAEBηAB + T

∫

Σ
B , (2.14)

where the pull–back to the worldsheet of the target–superspace quantities is understood,
the star ∗ denotes the Hodge dual operation on the worldsheet and the wedge product of
differential forms is implicit. From this action one gets the superstring equations of motion
which have the following form for our choice of the superspace constraints, eq. (2.1) (see also
[7, 11]). The fermionic field equations are

Ψα ≡ i ∗ EA (ΓAE)α − iEA (ΓAΓ11E)α +
i

2
∗ EAEA λα +

i

2
EAEB (ΓABΓ11λ)α = 0 , (2.15)

and the bosonic field equations are

BA ≡ d ∗ EA + ∗EBΩB
A + i ∗ EA Eλ+

1

3
(∗EAEB ∂Bφ− ∗EBEB ∂Aφ)

− iEΓAΓ11E − 2iEB EΓA
BΓ11λ+

1

2
ECEB HA

BC = 0 . (2.16)

Note that in the AdS4 × CP 3 case ∂Aφ = 0 3. We shall see that it is also zero in the
AdS2×S2×T 6 case to the second order in υ and guess that it may also be true to all orders,
because of the similarity between the two cases.

If we put the non–supercoset fermions υ to zero the equations of motion (2.15) and (2.16)

reduce to those of the sigma–models on OSp(6|4)
SO(1,3)×U(3) and

PSU(1,1|2)⋊E(6)
SO(1,1)×U(1)×SO(6) , respectively, with

2To be precise, eq. (2.13) holds for the AdS2 × S2 × T 6 background with a non–zero F4 and F2 flux such
that the latter has support on S2 as in eq. (3.3) of [2].

3To check that in the AdS4 × CP 3 case ∂Aφ = 0 one can use the fact that φ(υ) and λα = − i
3
∂αφ do not

depend on XM and ϑ (see [7]), so we have

0 = ∂Mφ = EM
A
∂Aφ+ EM

α
∂αφ = EM

A
∂Aφ+ 3iEM

α
λα = 0.

If ∂Aφ = 0, from the above equation it follows that the contraction of the gravitino superfield EM
α with the

dilatino λα of this supergravity solution is zero, EM
αλα = 0. This can be checked using the explicit expressions

for Eα and λα derived in [7].
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the equations of motion of the T 6 coordinates decoupled in the latter case. In our conventions
the supercoset equations of motion have the following form

Ψ0α = i ∗EA (ΓAE)α − iEA (ΓAΓ11E)α = 0 , (2.17)

BA
0 = ∇ ∗ EA − iEΓAΓ11E = 0 , (2.18)

where ∇ ∗ EA = d ∗ EA + ∗EBΩ
BA
0 and ΩAB

0 (X,ϑ) is the supercoset spin connection ΩAB
0 =

ΩAB|υ=0, and EA(X,ϑ) = c−2EA|υ=0 and Eα(X,ϑ) = c−1Eα|υ=0 (with c being a constant
dilaton factor) are the supercoset supervielbeins. They are the components of the Cartan
form valued in the isometry supergroup G (i.e. OSp(6|4) or PSU(1, 1|2) ⋊ E(6))

K = g−1dg(X,ϑ) =
1

2
ΩAB
0 MAB + EAPA +QαE

α , g(X,ϑ) ∈ G/H . (2.19)

The algebra of the isometry generators and the explicit form of the supercoset bosonic and
fermionic supervielbeins, and the spin connection are given in Appendix A. The isometry
algebra is invariant under the following action of the Z4–automorphism on the generators
T = (M,P,Q)

Ω(T ) ≡ Ω−1TΩ Ω(MAB) = MAB, Ω(PA) = −PA, Ω(Q) = −iQΓ11, Ω4 = 1 .
(2.20)

Note that in the AdS2 ×S2 × T 6 case the T 6 translation generators Pa′ also have Z4–grading
one, as those of AdS2 × S2.

When the non–coset fermions are non–zero, the supercoset field equations (2.17) and
(2.18) acquire non–zero right–hand sides

Ψ0 = O(υ) , B0 = O(υ) (2.21)

which should be taken into account when extending the supercoset Lax connection to a zero–
curvature Lax connection of the complete theory (see Section 3).

2.3 Supercoset Lax connection

The equations of motion of the superstring on the semi–symmetric supercoset spaces with
Z4–grading (2.19) and (2.20) admit a Lax representation which implies classical integrability
of the corresponding sigma–model [3, 4, 5, 6]. This means that from the components of the
Cartan form (2.19) pulled–back on the worldsheet and their 2d Hodge duals one can construct
a Lax connection (depending on a spectral parameter) which has zero curvature provided that
the equations of motion (2.17) and (2.18) are satisfied. And vice versa the zero curvature of
the Lax connection implies the field equations. In our notation and conventions the supercoset
Lax connection has the following form

Lcoset =
1

2
ΩAB
0 MAB + (1 + α1)E

APA + α2 ∗ EAPA +Q(β2 + β1Γ11)E , (2.22)

where α1, α2, β1 and β2 are numerical parameters whose values are determined by requiring
the zero–curvature condition

dLcoset − Lcoset ∧ Lcoset = 0 (2.23)
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to hold on the mass–shell (2.17) and (2.18). This gives the following relations between the
parameters

α2
2 = 2α1 + α2

1 (2.24)

and

β1 = ∓
√

α1

2
, β2 = ± α2√

2α1
. (2.25)

They can therefore be expressed in terms of a single spectral parameter x as follows

α1 =
2x2

1− x2
, α2 =

2x

1− x2
β1 = − ix√

x2 − 1
, β2 =

i√
x2 − 1

. (2.26)

It is very useful for further analysis to specify the properties of the 32× 32 matrix

V = β2 + β1Γ11 , (2.27)

which enters the Lax connection (2.22). It is easily seen to satisfy the relations

V 2 = 1 + α1 − α2Γ11 , V V † = β2
2 − β2

1 = 1 , (V †)αβ = −(CV TC)αβ = (β2 − β1Γ11)
α
β ,

(2.28)
where C denotes the anti-symmetric charge-conjugation matrix (see Section 2.1). Therefore
V ∈ Sp(32).

It is easy to check that the Lax connection (2.22) is invariant under the Z4–transformations
of the generators (2.20) accompanied by the inversion of the spectral parameter

Ω(x) =
1

x
, (2.29)

which implies that

α1 → −α1 − 2 , α2 → −α2 , V → iΓ11V . (2.30)

Namely,

Ω(Lcoset(x)) = Ω−1Lcoset(
1

x
)Ω = Lcoset(x) .

Note that in the AdS2 × S2 × T 6 case the first term of (2.22) may in general include the
SO(6) spin connection on T 6 whose curvature is zero. Therefore, it can be gauged away by
performing a suitable gauge transformation of Lcoset, and the resulting Lax connection will
contain only terms associated with the U(1)6 ‘translations’ Pa′ along T 6 which completely
decouple from the PSU(1, 1|2) part and, therefore, can be taken with arbitrary coefficients.

The explicit dependence of the supercoset Lax curvature on the left–hand sides of the
supercoset field equations (2.17) and (2.18) looks as follows

dLcoset − Lcoset ∧ Lcoset = α2(BA
0 PA − 1

R
QV †γ⋆Ψ0) , (2.31)

where again γ⋆ stands for γ5 in the AdS4 × CP 3 case and for Γ01γ7 in the AdS2 × S2 × T 6

case (see eqs. (2.9) and (A.4)).
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3 The Lax connection of the complete GS superstring to quadratic
order in non–coset fermions υ

We are now ready to extend the supercoset Lax connection (2.22) with terms that include
contributions from the string fermionic modes υ associated with broken target–space super-
symmetries

L = Lcoset(X,ϑ) + α2L
′(X,ϑ, υ) , (3.1)

where the factor of α2 in front of L′ is due to the same factor on the right–hand side of (2.31).
The correction L′ which is aimed at canceling the r.h.s. of (2.31), turns out to take the same
form for both the AdS4 × CP 3 and AdS2 × S2 × T 6 case and looks as follows

L′ = − i

R
Qγ⋆

[

∗(EA + 2iυΓAE) ΓAV υ − (EA + 2iυΓAE) ΓAΓ11V υ
]

− i

R
Qγ⋆

[

i(υΓAΓ11E) ΓAV υ + i(υΓAE) ΓAΓ11V υ
]

+ (2iυΓA ∗E + iυΓA ∗ ∇υ − 2

R
∗ EB υΓAPγ⋆ΓBυ)PA

+ (2iυΓAΓ11E + iυΓAΓ11∇υ − 2

R
EB υΓAΓ11Pγ⋆ΓBυ)PA

+
i

8
(∗EC υΓC

DEV 2υ − EC υΓC
DEΓ11V

2υ)RDE
AB MAB , (3.2)

where the matrix V has been introduced in (2.27), and γ⋆, P and RDE
AB are defined for

AdS4 × CP 3 and AdS2 × S2 × T 6 in Section 2.1 and Appendix A. The covariant derivative
is defined with respect to the supercoset spin connection ΩAB

0 = ΩAB|υ=0, i.e. ∇υ = (d −
1
4Ω

AB
0 ΓAB)υ.
To construct L′(X,ϑ, υ) one had to know the form of the right–hand sides of eqs. (2.17)

and (2.18). For the AdS4 × CP 3 case these can be given to all orders in υ since the explicit
form of the geometry of the AdS4 × CP 3 superspace is known [7]. Because of technical
complications, we have however restricted the construction of the Lax connection to the
second order in υ only.

In the AdS2 × S2 × T 6 case the explicit form of the geometry of the complete target
superspace is not know, so our strategy was somewhat opposite to that of the AdS4 × CP 3

case. We have assumed that in the AdS2×S2×T 6 case the Lax connection has a similar form
to the AdS4 × CP 3 Lax connection, i.e. eq. (3.2) with the appropriate replacement of the
supersymmetry projector P and the product of gamma–matrices γ⋆ appearing in the definition
of the isometry superalgebra (see Appendix A). Then, requiring that the AdS2×S2×T 6 Lax
connection has zero curvature we have reconstructed the superstring equations and the form
of the AdS2×S2×T 6 superbackground up to the second order in the non–coset fermions and
checked that it indeed satisfies the constraints of type IIA supergravity.
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3.1 AdS4 × CP 3 case

Taking the expressions for the quantities defining the full AdS4×CP 3 supergeometry [7] and
expanding them to the second order in υ we get

EA = c2(1− 1

R
υγ5υ)(EA + 2iυΓAE + iυΓADυ) +O(υ3) ,

PE = c(1− 1

2R
υΓbγ5υ Γb +

1

R
υΓbγ7υ ΓbΓ11 +

1

2R
υυ γ5)E +O(υ3) ,

(1− P)E = cDυ +O(υ3) ,

λ =
2i

cR
γ5υ +O(υ3) ,

Habc = − 12i

c2R2
υΓabcΓ11υ +O(υ3) , (3.3)

where c = e
1

6
φ0 =

(

R
klp

)1/4
, φ0 is the value of the dilaton for the AdS4 × CP 3 supergravity

solution, k is the ‘Chern–Simons’ level, lp is the 11d Planck length and

Dυ = (∇+
i

R
Ea γ5Γa)υ . (3.4)

Remember that in the above expressions EA(X,ϑ), Eα(X,ϑ) and ΩAB
0 (X,ϑ) are the com-

ponents of the Cartan form of the supercoset OSp(6|4)
SO(1,3)×U(3) (see Section 2.1 and Appendix

A.2). Note also that though in the background under consideration the purely bosonic part
of the NS-NS flux HABC(X) is zero, its superfield extension is non–trivial and depends on
the non–coset fermionic coordinates.

We can now insert the expressions (3.3) into the complete equations of motion (2.15) and
(2.16) and thus find the corrections to the supercoset equations (2.21). For this we should
also know the form of the spin connection ΩAB(X,ϑ, υ) which was not derived in [7]. The
expression for ΩAB(X,ϑ, υ) can be obtained by analyzing the torsion constraint (2.1) and has
the following form to the second order in υ

ΩAB = ΩAB
0 +

2

R

(

− δAa′δ
B
b′ υΓ

a′b′γ5E + δAa δ
B
b υΓabγ5Dυ +

i

R
δAa′δ

B
b′ E

c υΓa′b′
cυ

− 2i

R
δ
[A
a′ δ

B]
b Ec′ υΓa′b

c′υ
)

+O(υ3) . (3.5)

Notice that (due to the last term in (3.5)) the spin connection takes values in the whole
D = 10 Lorentz algebra so(1, 9) rather than in the stability subalgebra so(1, 3) ⊕ u(3) of the
bosonic coset AdS4 × CP 3. This reflects the fact that the complete AdS4 × CP 3 superspace
is not a supercoset.

The explicit form of the corrections to the equations of motion (2.17) and (2.18) are given
in Appendix B. Thus, the correction L′ to the supercoset Lax connection which cancels the
contributions of the right–hand sides of these equations to the Lax curvature (2.31) has been
found to be eq. (3.2).

3.2 AdS2 × S2 × T 6 Lax connection and supergeometry

We now pass to the consideration of the AdS2×S2×T 6 case. As we have already mentioned,
a problem that we meet is that here the explicit form of the corresponding 10d superspace
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with 32 fermionic directions is unknown. What is known is the supercoset structure of its
sub–superspace obtained by putting to zero 24 fermionic coordinates υ and, on the other
hand, the structure of the complete AdS2 × S2 × T 6 superspace to the second order in the
32 fermions Θ (see [2] for more details and references). Our goal is to take a step further
and to find the explicit form of the AdS2 × S2 × T 6 superbackground to all orders in the 8
coset fermions ϑ and to quadratic order in 24 non–coset fermions υ. To this end, we assume
that the AdS2 × S2 × T 6 Lax connection has the form of (3.1) and (3.2) in which now Lcoset

and L′ are constructed with the use of the Cartan forms, the curvature of PSU(1,1|2)⋊E(6)
SO(1,1)×U(1)×SO(6)

and the structure of its isometry superalgebra given in Appendix A. Namely, in (3.2) we
now take P to be the supersymmetry projector P8 and γ⋆ = Γ01γ7 as in the superalgebra of
PSU(1, 1|2) ⋊ E(6).

Then, requiring that the curvature of the Lax connection (3.1) and (3.2) vanishes, we get
the form of the superstring equations (2.15) and (2.16) in AdS2×S2×T 6 as a deformation of

the PSU(1,1|2)⋊E(6)
SO(1,1)×U(1)×SO(6) sigma–model field equations to the second order in υ and consequently

reconstruct to the same order the form of the supervielbeins, the spin connection and the
NS–NS superfield strength of the complete AdS2 × S2 × T 6 superbackground.

Using the expressions given in Appendix C the curvature of the Lax connection (3.1) with
L′ given in eq. (3.2) and valued in the PSU(1, 1|2) ⋊ E(6) superalgebra of Appendix A can
be assembled to have the following form

dL− LL =
α2

c3

[1

4
(υ(V †)2ΓcdΨ+

ic

2
Ba υΓa

cdV 2υ)Rcd
efMef + cBA PA

+
2i

R
υγ⋆Γ

A(1− P)ΨPA +
c

R
BB υΓA

Bγ⋆υ PA +
c

R
BB υΓAPΓBγ⋆υ PA

− 1

R
QV †γ⋆Ψ− ic

R
BAQV †γ⋆ΓAυ − 1

4R2
QV †γ⋆ΓBCΨ υΓBCγ⋆υ

− 1

2R2
QV †γ⋆γ7ΓBΨ υΓBγ⋆γ7υ − 1

2R2
QV †γ⋆ΓBΓ11Ψ υΓBγ⋆Γ11υ

− 1

2R2
QV †γ⋆Γab′γ5γ⋆Ψ υΓab′γ5υ − 1

4R2
QV †γ⋆Γabc′γ⋆Ψ υΓabc′υ

+
α2

2R2

(

υΓaγ5υ QV γ7γ⋆Γaγ⋆Ψ+ υΓaγ7υ QV γ5γ⋆Γaγ⋆Ψ

+ 2υΓa′γ⋆Γ11υQV Γa′γ⋆Ψ+ 2υΓa′γ⋆υQV Γ11Γa′γ⋆Ψ
)]

+O(υ3) , (3.6)

where, if the curvature is zero, Ψα and BA should vanish and hence should coincide with the
equations of motion of the AdS2 × S2 × T 6 superstring.

Comparing the form of these Ψα and BA with the Green–Schwarz superstring equations
(2.15) and (2.16) we find that the AdS2×S2×T 6 supergeometry is described by the following
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supervielbeins, dilatino and spin connection

EA = c2(1 +
1

R
υγ⋆υ)(E

A + 2iυΓAE + iυΓADυ) +O(υ3)

PE = cP(1 +
1

2R
υΓBγ⋆γ7υ ΓBγ7 −

1

2R
υΓBγ⋆Γ11υ ΓBΓ11 −

1

4R
υΓBCγ⋆υ ΓBC)E +O(υ3)

(1− P)E = c[Dυ + (1− P)(
1

2R
υΓBγ⋆γ7υ ΓBγ7 −

1

2R
υΓBγ⋆Γ11υ ΓBΓ11 −

1

4R
υΓBCγ⋆υ ΓBC

− 1

2R
υΓbc′Γ11υ γ⋆Γbc′Γ11 −

1

4R
υΓbcd′υ γ⋆Γbcd′)E] +O(υ3)

λ = − 2i

cR
γ⋆υ +O(υ3) , (3.7)

ΩAB = ΩAB
0 − 2

R
δ
[A
a′ δ

B]
b′ υγ⋆Γ

a′b′E − 1

R
υΓ[A(1− P)ΓB]γ⋆Dυ − 1

R
υγ⋆Γ

[A(1− P)ΓB]Dυ

+
i

R2
δ
[A
a′ δ

B]
b′ E

C υΓa′(1− P)Γb′γ⋆ΓCγ⋆υ +
i

R2
δ
[A
a′ δ

B]
b′ E

c′ υΓa′PΓb′c′υ

− 2i

R2
δ
[A
a′ δ

B]
b Ec′ υΓa′(1− P)ΓbΓc′υ +

2i

R2
δ
[A
a′ δ

B]
b E ĉ υΓa′b

ĉυ

− 2i

R2
δ
[A
a′ δ

B]

b̂
Ec υΓa′ b̂

cυ − 2i

R2
δ[Aa δ

B]
b Ec′ υΓab

c′υ +O(υ3) , (3.8)

where

Dυ = (∇+
i

R
EB (1− P)ΓBγ⋆)υ (3.9)

and the constant c = e
1

6
φ0 , where φ0 is the dilaton vacuum expectation value of the AdS2 ×

S2 × T 6 supergravity solution.
Finally, the NS–NS three–form field strength turns out to be

HABC =
6i

c2R2

(

υγ⋆ΓABCΓ11γ⋆υ − δ
a
[A υγ⋆ΓBPΓC]Γaγ⋆Γ11υ − δd[Aδ

e
B υΓC]deΓ11υ

+ δd̂[Aδ
ê
B υΓC]d̂êΓ11υ

)

+O(υ3) . (3.10)

It remains to verify that this is indeed the correct form of the supergeometry, i.e. that
the above expressions solve the supergravity constraints to the relevant order. This is not
guaranteed since they were derived from the flatness of a Lax connection which we simply
postulated. It is known that it is enough to demonstrate that the Green-Schwarz string
action possesses kappa-symmetry in order to say that the background is a solution to the
supergravity equations. This in turn simply amounts to verifying that the components of
the torsion TA and NS–NS superfield strength H have the appropriate components involving
fermionic supervielbeins whose form is dictated by the supergravity constraints (2.1) and
(2.2).

Indeed, with the above choice of the spin connection (3.8) it is not hard to verify that
the type IIA supergravity torsion constraint (2.1) is satisfied to the quadratic order in υ. As
far as the constraint (2.2) is concerned we should substitute into it the expressions (3.7) and
(3.10) and check that the resulting superform H is closed. This can indeed be verified but
the calculation is somewhat lengthy and we leave the details for Appendix E.
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Thus we have constructed the supergeometry of the AdS2 × S2 × T 6 solution of type
IIA supergravity to all orders in the 8 supercoset fermions ϑ and to the second order in
the 24 non–supercoset fermions υ. Although in this paper we have not obtained the RR
superfield strengths F2 and F4, which are needed for the construction of D–brane actions
in this superbackground, these can be found using the Bianchi identities, the corresponding
superspace constraints given in [11] and the above form of the supervielbeins.

By constructing the zero–curvature Lax connection we have demonstrated that the GS
string in AdS2 ×S2×T 6 is classically integrable up to quadratic order in the non–supercoset
fermions and to all orders in the coset fermions thus extending the results of [2] which con-
sidered all the fermions to the second order only.

4 Properties of the Lax connection

4.1 Z4–invariance

The Lax connection (3.1) with Lcoset and L′ given, respectively, in (2.22) and (3.2) is invariant
under the Z4–transformations (2.20) of the isometry generators and the inversion of the
spectral parameter (2.29) and (2.30). This demonstrates that the contribution of the non–
coset fermions does not spoil the Z4–symmetry of the supercoset Lax connection which is of
crucial importance for the derivation of the algebraic curve and the Bethe ansatz equations,
both classical and quantum [12, 13, 8, 14]. The Z4–invariance induces the corresponding
conjugation symmetry of the monodromy matrix of the Lax connection

Ω−1M(1/x)Ω = M(x)

used for the construction of the algebraic curve 4.

4.2 The Lax connection and conserved currents

Let us now present an interesting observation how the Lax connection L = Lcoset + α2L
′ can

be related to the conserved current associated with the superisometries. First of all notice
that in the limit α2 = ǫ → 0, in which

α1 =
1

2
ǫ2 +O(ǫ4) , β1 = −1

2
ǫ+O(ǫ2) , β2 = 1 +O(ǫ2) , (4.1)

and
V = β2 + β1Γ11 → 1, V † = β2 − β1Γ11 → 1 ,

the Lax connection reduces to
L = K +O(ǫ) , (4.2)

where K(X,ϑ) is the supercoset Cartan form introduced in (2.19).
In fact, the term denoted by O(ǫ) in the (gauge–transformed) Lax connection is the

worldsheet Hodge dual of a superstring conserved current J associated with the background
superisometries, namely

∗ J = lim
ǫ→0

1

ǫ
(gLg−1 − dgg−1) = g lim

ǫ→0

L−K

ǫ
g−1 , (4.3)

4We thank Kostya Zarembo for the discussion of these points.
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where g(X,ϑ) is the superisometry group element determining K in (2.19).
The conservation of J , i.e. d ∗ J = 0, follows from the flatness of the Lax connection and

the Cartan form
dL− LL = 0 , dK −KK = 0 . (4.4)

Indeed, in view of (4.2), we have

d ∗ J = g lim
ǫ→0

dL− dK

ǫ
g−1 − ∗JgKg−1 − gKg−1 ∗ J

= g lim
ǫ→0

(L−K)K +K(L−K)

ǫ
g−1 − ∗JgKg−1 − gKg−1 ∗ J = 0 . (4.5)

Note that in the case of the supercoset Lax connection (2.22) (when υ = 0), the current con-
structed in this way coincides with the conserved current of the G/H sigma–model considered
in [3, 5, 1]

Jcoset = g(EAPA − 1

2
QΓ11 ∗ E)g−1 . (4.6)

We can now write the correction (3.2) to the Lax connection in terms of (transformed)
components of the conserved current as

L′ = g−1 ∗ (J̃ − J̃coset)g , (4.7)

where J̃ and J̃coset are, respectively, the complete conserved current (to second order in υ)
(4.3) and the conserved current of the supercoset model (4.6), and the tilde means that in
their expressions we perform the following substitutions of spinorial quantities

E → V †E, ∇υ → V †∇υ and υ → V υ.

For instance,

J̃coset = g(EAPA − 1

2
QΓ11V

† ∗E)g−1 . (4.8)

Whether this fact is of some deeper significance remains to be understood. Perhaps, a
better understanding of this could lead to a proposal for the complete Lax connection to all
orders in the non–coset fermions. We leave this problem for future analysis.

4.3 Relation to the Lax connections constructed in [1, 2]

In [1, 2] Lax connections for the superstring in AdS4 × CP 3 and AdS2 × S2 × T 6 have been
constructed (up to second order in fermions) using components of the Noether currents of the
corresponding superisometries OSp(6|4) and PSU(1, 1|2)×U(1)6 (note that only the Abelian
U(1)6–currents of the E(6) isometries enter the Lax connection)

J = JB + Jsusy , (4.9)

where the conserved current JB of the bosonic isometries has the form

JB = J1 + J2 , (4.10)
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J1 =
(

eA(X) + iΘΓA∇Θ+ iΘΓAΓ11 ∗ ∇Θ

− 2

R
eB ΘΓAPγ⋆ΓBΘ− 2

R
∗ eB ΘΓAPγ⋆Γ11ΓBΘ

)

(gPA g−1)|ϑ=0,

(4.11)

J2 =
i

8

(

eC ΘΓAB
CΘ− ∗eC ΘΓAB

CΓ11Θ
)

RAB
DE (gMDE g−1)|ϑ=0

and the supersymmetry current Jsusy is

Jsusy =
i

R
(gQg−1)|ϑ=0 γ⋆ (∗eA ΓAΓ11Θ− eA ΓAΘ) . (4.12)

In (4.11) and (4.12) the isometry group element (2.19) is evaluated at ϑ = 0 5.
The Lax connection constructed in [1, 2] has the following form

Λ = α1 J1|Θ=0 + α2 ∗ J1 + α2
2 J2 + α2(1 + α1) ∗ J2 − α2(β1Jsusy − β2 ∗ Jsusy) , (4.13)

where the coefficients α1,2 and β1,2 are the same as in (2.22).
Now note that in the limit (4.1) the Lax connection reduces to the Hodge dual of the

conserved current (4.9)

lim
ǫ→0

1

ǫ
Λ = ∗J . (4.14)

Comparison of eq. (4.14) with (4.3) suggests a non–straightforward relation between the two
connections via the following gauge transformation depending on the spectral parameter and
accompanied by the shift in the X–dependence of Λ 6

Λ(XM + iυΓMϑ,Θ) = Gx(X,Θ)L(X,Θ)G−1
x

(X,Θ) − dGxGx
−1(X,Θ) , (4.15)

where both sides are truncated to quadratic order in fermions, ΓM = ΓA eA
M (X) and

Gx(X,Θ) is an isometry supergroup element depending on the spectral parameter x, which
in the exponential parametrization has the following form

Gx(X
A,Θ) = e(X

A+iυΓA(1−V 2)ϑ)PA eQV ϑ h(i∆ ΩAB
0 ) , (4.16)

where
h(i∆ ΩAB

0 ) = e−
1

2
iυΓC (1−V 2)ϑΩ0C

AB(X,ϑ)MAB

is a compensating gauge transformation in the stability subgroup H (i.e. SO(1, 3)×U(3) or
SO(1, 1) × SO(2)) of the superisometry group G.

Actually, as an independent derivation procedure, alternative to that described in Section
3, we also got the form of the terms in L′ quadratic in fermions in the Lax connection (3.2)
by performing the inverse gauge transformation, from Λ to L.

Note that in contrast to (2.22) and (3.2) the Lax connection (4.13) is not directly in-
variant under the Z4–transformations (2.20), (2.29) and (2.30). In particular, its first (α1–
dependent) term acquires the shift −2eAΩ(gPAg

−1|ϑ=0). To get back Λ in its initial form the
Z4–transformed Lax connection

Ω(Λ(x)) = Ω−1Λ(
1

x
)Ω

5Note that KA(X) = (gPA g−1)|ϑ=0 and Ξ(X) = γ⋆(gQg−1)|ϑ=0 are simply the Killing vector and the
Killing spinor of the superisometries (see [1, 2] for more details).

6The shift X → X + iυΓAϑ in Λ is required since Λ and L are constructed in different coordinate systems
(see Section 2 of [9] for more details about the choice of the coordinate basis).
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should undergo a compensating gauge transformation GΩ and one finds

Λ = GΩΩ(Λ)G−1
Ω − GΩdG−1

Ω , where GΩ = GxΩ
−1G−1

x Ω ,

Gx(X,Θ) is the same as in (4.15) and Λ is evaluated at XM + iυΓMϑ. Of course, this gauge
transformation, which also affects the spectral parameter x, is nothing but a different form
of the relation (4.15) taking into account the Z4–invariance of L.

4.4 Lax connection and kappa–symmetry

The Green–Schwarz formulation of the superstring is invariant under the local fermionic
transformations of the target–space coordinates ZM = (XM ,Θµ) which satisfy the following
properties

δκZ
M EMα =

1

2
(1 + Γ)αβ κ

β(ξ), α = 1, · · · , 32 (4.17)

δκZ
M EMA = 0, A = 0, 1, · · · , 9 (4.18)

where κα(ξ) is a 32–component spinor parameter, 1
2(1 + Γ)αβ is a spinor projection matrix

with

Γ =
1

2
√

− det gij
ǫij EiA EjB ΓAB Γ11, Γ2 = 1 , (4.19)

and gij is an induced worldsheet metric.
The string equations of motion (2.15) and (2.16) transform into each other under the

kappa–symmetry variations. Since the condition for the Lax connection to have zero–curvature
is in one to one correspondence with the equations of motion, it is natural to assume that
on the mass–shell the Lax connection should be invariant under the kappa–symmetry trans-
formations, at least, modulo a gauge transformation. This is indeed so in the case of the
supercoset sigma–models (see e.g. [5]). The explicit check that also the non–coset Lax con-
nection (3.1), (3.2) possesses this property would be somewhat cumbersome, but fortunately
one should not do this, because there is a simple generic proof that makes this fact evident.
Indeed, since any Lax curvature depends on the left–hand–sides of the equations of motion
(as e.g. in (2.31) and (3.6)), its variation under (4.17) and (4.18) also depends on the field
equations and hence vanishes on–shell. This means that kappa–variation of the Lax connec-
tion leaves its curvature zero and, therefore, the kappa–transformed Lax connection is related
to the initial one by a corresponding infinitesimal gauge transformation taking values in the
isometry superalgebra.

5 Conclusion

We have constructed the zero–curvature Lax connections for Green–Schwarz superstrings
in AdS4 × CP 3 and AdS2 × S2 × T 6 superbackgrounds which generalize the corresponding
supercoset sigma–model Lax connections with contributions due to the physical world–sheet
fermionic modes associated with non–supersymmetric directions of the target superspaces.
We have shown that the contribution of the non–coset fermions does not spoil the important
property of the Lax connections being Z4–invariant and demonstrated how the obtained Lax
connections are related via gauge transformations to the Lax connections constructed in [1, 2]
with the use of an alternative (Noether–current) prescription.
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Having at hand Lax connections which include the contribution of non–coset worldsheet
modes one can address the problem of how these modify the algebraic curve and Bethe ansatz
equations for the full superstring theory in these backgrounds. This should lead to a more
general approach to integrability of Green–Schwarz superstrings which does not rely on having
a supercoset sigma–model description of the string.

The terms in the Lax connections containing the non–supercoset fermions υ have been
computed to the second order in υ. An interesting and important open problem is to un-
derstand the structure of the Lax connections to all the orders in the non–coset fermions.
Presumably, the series in υ (eq. (3.2)) would converge into covariant expressions in terms of
background superfields (supervielbeins, connection etc.) as happens for the supercoset Lax
connections expressed in terms of the superisometry Cartan forms.

In the process of the construction of the Lax connections we have obtained the form of
the superfield quantities (supervielbeins, connection, NS–NS field strength and dilatino) that
describe the AdS2 × S2 × T 6 superbackground to all orders in the supercoset fermions and
to the second order in the non–coset ones. We have also obtained the explicit form of the
spin connection of the AdS4 ×CP 3 superspace (to the second order in υ) which was left out
in [7]. In contrast to the Green–Schwarz formulation, the knowledge of the form of the spin
connection is required, for instance, for the pure spinor description of superstrings in curved
superbackgrounds [17] and, in particular, is needed for extending to the full AdS4 × CP 3

superspace the supercoset pure–spinor sigma–model of [18, 19, 20]. With some more efforts,
which will be made elsewhere, one can also compute the form of the superfield strengths F2

and F4 of the RR fluxes in type IIA AdS2 × S2 × T 6 superbackgrounds and corresponding
quantities describing this superbackground in the type IIB case. These are also required
for the construction of the pure spinor string action and for studying D–branes in these
superbackgrounds.

Finally a detailed knowledge of string theory in AdS2 × S2 × T 6 might shed light on the
corresponding AdS2/CFT1 holographic duality which so far has not been well understood.
This correspondence is especially important due to the relation to black holes in D = 4
that have an AdS2 ×S2 near–horizon geometry. The integrable string model considered here
could for example be used to make predictions for anomalous dimensions of operators on the
gauge–theory side which could be compared to those computed in a given candidate dual
theory.
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A Supercoset description of AdS4 × CP 3 and AdS2 × S2 × T 6

A.1 OSp(6|4) and PSU(1, 1|2)⋊ E(6) superalgebras

The superisometry group of AdS4×CP 3 is OSp(6|4) while the (local) superisometry group of
AdS2×S2×T 6 is PSU(1, 1|2)⋊E(6) (the semi-direct product7 of PSU(1, 1|2) with generators
(Pa,Mab, Q) and the Euclidean group in six dimensions with generators (Pa′ ,Ma′b′)). The
commutation relations of both the OSp(6|4) and PSU(1, 1|2) ⋊ E(6) superalgebras can be
written in 10D notation as

[PA, PB ] = −1

2
RAB

CDMCD , [MAB , PC ] = ηACPB − ηBCPA

[MAB ,MCD] = ηACMBD + ηBDMAC − ηBCMAD − ηADMBC , (A.1)

where RAB
CD is the Riemann tensor of AdS4 × CP 3 or AdS2 × S2 × T 6 respectively, which

are given in Section 2.1, while the commutation relation involving fermionic generators are

[PA, Q] =
i

R
Qγ⋆ΓAP [MAB , Q] = −1

2
QΓABP , (A.2)

{Q,Q} = 2i(PΓAP)PA +
R

4
(PΓABγ⋆P)RAB

CDMCD . (A.3)

In these expressions γ⋆, P and R are given by

OSp(6|4) PSU(1, 1|2) ⋊ E(6)

γ⋆ γ5 Γ01γ7

P P24 P8

R 2RAdS4
2RAdS2

, (A.4)

where
γ5 = iΓ0123 and γ7 = iΓ456789 .

A.2 Supercoset geometry

The supercoset corresponding to AdS4 × CP 3 with 24 fermionic directions is

OSp(6|4)
SO(1, 3) × U(3)

, (A.5)

while the supercoset corresponding (locally) to AdS2 ×S2 × T 6 with 8 fermionic directions is

PSU(1, 1|2) ⋊ E(6)

SO(1, 1) × SO(2)× SO(6)
, (A.6)

where E(6) is the Euclidean group in six dimensions. The supercosets are parametrized by
bosonic coordinates XM and fermionic coordinates ϑ = PΘ. The corresponding supercoset
geometries are described by Cartan forms satisfying the Maurer–Cartan equation

K(X,ϑ) = g−1dg(X,ϑ) =
1

2
ΩAB
0 MAB + EAPA +QE , dK = KK . (A.7)

7It is the semi-direct rather than the direct product since the fermionic generators of PSU(1, 1|2) transform
under a U(1) ⊂ SO(6) ⊂ E(6) as follows from (A.2), see also [2].
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For instance, if one chooses the isometry supergroup element in the form g(X,ϑ) = ePAXA

eQϑ,
the supervielbeins and spin connection are given by

EA = eA + 2iϑΓA coshM− 1

M2
Dϑ ,

Eα =

(

sinhM
M Dϑ

)α

,

ΩAB
0 = ωAB +

R

2
ϑΓCDγ⋆

coshM− 1

M2
DϑRCD

AB , (A.8)

where

M2 = − 2

R
(Pγ⋆ΓAϑ)(ϑΓ

AP)− R

8
RAB

CD(ΓCDϑ)(ϑΓ
ABγ⋆) , (A.9)

while

Dϑ = P(d− 1

4
ωABΓAB +

i

R
eA γ⋆ΓA)ϑ (A.10)

is the Killing–spinor derivative.
From the Maurer-Cartan equation one also finds the supercoset torsion

∇EA ≡ dEA + EBΩ0B
A = −iEΓAE, (A.11)

∇E ≡ (d− 1

4
ΩAB
0 ΓAB)E =

i

R
EA (Pγ⋆ΓAE) (A.12)

and curvature

dΩAB
0 +ΩAC

0 Ω0C
B = (

1

2
EDEC − R

4
EΓCDγ⋆E)RCD

AB . (A.13)

B Superstring equations of motion on AdS4×CP 3 to the second
order in υ

To derive the form of the corrections (3.2) to the supercoset Lax connection due to the
non–coset fermionic modes υ we have had to compute the corresponding corrections to the
superstring field equations (2.21), which have the following form

Ψ0 ≡ i ∗ EA (ΓAE)− iEA (ΓAΓ11E)

= −i ∗ (2iυΓAE + iυΓADυ) (ΓAE) +
i

R
∗EA υγ5υ(ΓAE) +

i

2R
∗ EA υΓbγ5υ (ΓAΓbE)

− i

R
∗EA υΓbγ7υ (ΓAΓbΓ11E)− i

2R
∗EA υυ (ΓAγ5E)− i

R
EA υγ5υ (ΓAΓ11E)

+ i(2iυΓAE + iυΓADυ) (ΓAΓ11E)− i

2R
EA υΓbγ5υ (ΓAΓ11ΓbE)

− i

R
EA υΓbγ7υ (ΓAΓbE) +

i

2R
EA υυ (ΓAγ7E)− i ∗ ÊA (ΓADυ)

+ iÊA (ΓAΓ11Dυ) +
1

R
∗ ÊA ÊA (γ5υ) +

1

R
ÊAÊB (ΓABγ7υ) (B.1)
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and

BA
0 ≡ ∇ ∗ EA − iEΓAΓ11E

= −∇ ∗
[

2iυΓAE + iυΓADυ − 1

R
υγ5υEA

]

+
2

R
∗ EADυ γ5υ + 2iEΓAΓ11Dυ

+ iDυΓAΓ11Dυ + 2iEΓAΓ11

(

− 1

2R
υΓbγ5υ Γb +

1

R
υΓbγ7υ ΓbΓ11 +

1

2R
υυ γ5

)

E

− 2

R
∗ Êb′δAa′υΓ

a′
b′γ5E +

2

R
∗ EbδAa υΓa

bγ5Dυ +
4i

R2
∗Eb′EcδAa′ υΓ

a′
b′cυ

− 4

R
ÊB EΓA

Bγ
7υ − 4

R
EB Dυ ΓA

Bγ
7υ +

6i

R2
EcEbυΓabcΓ11υ , (B.2)

where ÊA = EA + 2iυΓAE.

C Curvature of the Lax connection

The curvature of the Lax connection (3.1), (3.2) computed to quadratic order in the non–coset
fermions υ can be split into three pieces corresponding to the generators in the superalgebra,
MAB , PA and Q:

dL− LL = (dL− LL)M + (dL− LL)P + (dL− LL)Q . (C.1)

With a bit of work one finds that, to order υ2,

(dL− LL)M =
α2

4

[

i ∗ ÊA υΓCDΓAV
2E + i ∗EA υΓCDΓAV

2∇υ − iÊA υΓCDΓAΓ11V
2E

− iEA υΓCDΓAΓ11V
2∇υ + 4υΓCV 2E υΓDΓ11E + 4υΓCE υΓDΓ11V

2E

− υΓAΓ11EEΓCDPΓAV
2υ − υΓAE EΓCDPΓAΓ11V

2υ +
i

2
∇ ∗ EA υΓA

CDV 2υ

− 1

2
EΓAE υΓA

CDΓ11V
2υ +

4

R
∗ECEA υΓDV 2Pγ⋆ΓAυ − 4

R
ECEA υΓDV 2Γ11Pγ⋆ΓAυ

− α2

R
∗EBEA υΓBPγ⋆Γ

CDPΓAΓ11υ − α2

R
EBEA υΓBPγ⋆Γ

CDPΓAυ
]

RCD
EFMEF ,(C.2)

where we have again introduced ÊA = EA + 2iυΓAE to shorten the expressions. The terms
in the Lax curvature proportional to PA are

(dL− LL)P =

α2

[

∇ ∗ (ÊA + iυΓA∇υ)− iEΓAΓ11E − 2iEΓAΓ11∇υ − i∇υΓAΓ11∇υ

− 2

R
EB υΓAΓ11Pγ⋆ΓBE − 2

R
EB υΓAΓ11Pγ⋆ΓB∇υ − 2

R
∗ ÊB EΓAPγ⋆ΓBυ

− 2

R
∗EB ∇υΓAPγ⋆ΓBυ +

2

R
ÊB EΓAPγ⋆ΓBΓ11υ +

2

R
EB ∇υΓAPγ⋆ΓBΓ11υ

− 2

R
∗EB υΓAPγ⋆ΓB∇υ +

2i

R
EΓBE υΓAΓ11Pγ⋆ΓBυ − 2i

R
EΓBΓ11E υΓAPγ⋆ΓBυ
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+
iR

16
EΓDEγ⋆E υΓAΓ11Γ

BCυ RBC
DE − i

8
EFED υΓABCΓ11υ RBCDF

− i

4
EFED υΓD

BCΓ11υ RBCF
A +

i

4
EB ∗EF υΓF

DEυ RDEB
A − 2i

R
υΓBΓ11E EΓAPγ⋆ΓBυ

− 2i

R
υΓBEEΓAPγ⋆ΓBΓ11υ − 2

R
(∇ ∗ EB − iEΓBΓ11E)υΓAPγ⋆ΓBυ

]

PA . (C.3)

Finally the terms proportional to Q in the Lax curvature become

(dL− LL)Q =

α2
i

R

[

(ÊA + iυΓA∇υ)QV †γ⋆ΓAΓ11E + ÊA QV †γ⋆ΓAΓ11∇υ

− ∗(ÊA + iυΓA∇υ)QV †γ⋆ΓAE − ∗ÊA QV †γ⋆ΓA∇υ

− i

R
ÊAÊB QV †γ⋆ΓAPγ⋆ΓBΓ11υ − i

R
∗ ÊAÊB QV †γ⋆ΓAPγ⋆ΓBυ

− 2

R
∗ EB EΓAPγ⋆ΓBυ QV †γ⋆ΓAυ +

2

R
∗EB υΓAPγ⋆ΓBυQV †γ⋆ΓAE

− 2

R
∗ EB υΓAE QV †γ⋆ΓAPγ⋆ΓBυ +

2

R
EB EΓAPγ⋆ΓBΓ11υ QV †γ⋆ΓAυ

+
2

R
EB υΓAΓ11Pγ⋆ΓBυQV †γ⋆ΓAE +

2

R
EB υΓAEQV †γ⋆ΓAPγ⋆ΓBΓ11υ

− 1

R
EB υΓAΓ11Pγ⋆ΓBEQV †γ⋆ΓAυ − 1

R
EB υΓAPγ⋆ΓBE QV †γ⋆ΓAΓ11υ

− 1

R
EB υΓAE QV †γ⋆ΓBγ⋆PΓAΓ11υ − 1

R
EB υΓAΓ11E QV †γ⋆ΓBγ⋆PΓAυ

+
R

16
(∗EC υΓC

DEυ − EC υΓC
DEΓ11υ)RDE

AB QV †ΓABE
]

+ α2
2

i

R2

(

∗ EB υΓAE (2QV γ⋆ΓAPγ⋆ΓBΓ11υ −QV γ⋆ΓBγ⋆PΓAΓ11υ)

+ ∗EB υΓAΓ11E (2QV γ⋆ΓAPγ⋆ΓBυ −QV γ⋆ΓBγ⋆PΓAυ)

−EB υΓAE (2QV γ⋆ΓAPγ⋆ΓBυ −QV γ⋆ΓBγ⋆PΓAυ)

−EB υΓAΓ11E (2QV γ⋆ΓAPγ⋆ΓBΓ11υ −QV γ⋆ΓBγ⋆PΓAΓ11υ)

− R2

16
(∗EC υΓC

DEυ − EC υΓC
DEΓ11υ)RDE

AB QV ΓABΓ11E

− R2

16
(∗EC υΓC

DEΓ11υ − EC υΓC
DEυ)RDE

AB QV ΓABE
)

− α2
i

R

(

∇ ∗ ÊA − iEΓAΓ11E − 2iEΓAΓ11∇υ − 2

R
EB υΓAΓ11Pγ⋆ΓBE

+
2

R
EB EΓAPγ⋆ΓBΓ11υ − 2

R
∗ EB EΓAPγ⋆ΓBυ

)

QV †γ⋆ΓAυ , (C.4)

where we’ve used the fact that

2(ΓAΓ11E)α(ΓAE)β+2(ΓAE)α(Γ
AΓ11E)β+(ΓAΓ11)αβ EΓAE+(ΓA)αβ EΓAΓ11E = 0 (C.5)

and

υΓA∇υQV †γ⋆ΓAΓ11E + υΓAΓ11∇υQV †γ⋆ΓAE + EΓAΓ11∇υ QV †γ⋆ΓAυ

+ EΓA∇υ QV †γ⋆ΓAΓ11υ + υΓAΓ11E QV †γ⋆ΓA∇υ + υΓAE QV †γ⋆Γ
AΓ11∇υ = 0 (C.6)
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which follow from the basic Fierz identity (D.11).

D Gamma-matrix identities

Some useful gamma-matrix identities are (a = 0, 1, 2, 3)

Γabc = −iεabcdΓdγ
5 (D.1)

Γab = − i

2
εabcdΓcdγ

5 (D.2)

Γa =
i

6
εabcdΓbcdγ

5 (D.3)

and some useful identities involving the projection operators are

P8Γ
a′b′c′P24 = −3iJ [a′b′P8Γ

c′]γ7P24 (D.4)

P8Γ
a′b′P8 = iJa′b′γ7P8 (D.5)

Γa′P8Γa′ = 2P24 (D.6)

Γ[a′P8Γ
b′] =

1

2
P24Γ

a′b′P24 +
i

2
Ja′b′γ7P24 (D.7)

P24(δ
b′

a′ + iJa′
b′γ7)Γb′P24 = 0 (D.8)

P8(δ
b′

a′ − iJa′
b′γ7)Γb′P24 = 0 . (D.9)

D.1 Fierz identities

The basic Fierz identity for the D = 11 gamma-matrices we use says that

ΓÂ
(αβ(ΓÂB̂)γδ) = 0 , (D.10)

where Â = 0, . . . , 10. In D = 10 notation this becomes the identities

ΓA
(αβ(ΓAΓ11)γδ) = 0 (D.11)

and
ΓA
(αβ(ΓAB)γδ) + Γ11

(αβ(Γ11ΓB)γδ) = 0 . (D.12)

We can also expand fermion bilinears in a Fierz basis as follows:

ΘαΘβ =
1

32
Cαβ ΘΘ− 1

32 · 2(ΓABΓ11)
αβ ΘΓABΓ11Θ− 1

32 · 3!Γ
αβ
ABC ΘΓABCΘ

+
1

32 · 3!(ΓABCΓ11)
αβ ΘΓABCΓ11Θ+

1

32 · 4!Γ
αβ
ABCD ΘΓABCDΘ . (D.13)

It will be useful to project this identity in various ways using our projection operators. In
the AdS4 × CP 3 case when υ = P8υ we get

υα υβ =
1

8
(P8C)αβ υυ +

1

8
(γ5P8)

αβ υγ5υ − 1

8
(Γaγ

5P8)
αβ υΓaγ5υ

+
1

8
(Γaγ

7P8)
αβ υΓaγ7υ − 1

16
(Γabγ

7P8)
αβ υΓabγ7υ

− 1

32 · 3! (P8Γa′b′c′P8)
αβ υΓa′b′c′υ +

1

32 · 3! (P8Γa′b′c′Γ11P8)
αβ υΓa′b′c′Γ11υ

+
1

32 · 3! (P8ΓaΓb′c′d′P8)
αβ υΓaΓb′c′d′υ (D.14)
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and it follows from this expression that

(Γa′υ)α (Γa′υ)
β = −1

4
(P24C)αβ υυ − 1

4
(γ5P24)

αβ υγ5υ − 1

4
(Γaγ

5P24)
αβ υΓaγ5υ

− 1

4
(Γaγ

7P24)
αβ υΓaγ7υ − 1

8
(Γabγ

7P24)
αβ υΓabγ7υ . (D.15)

Similarly we have in the AdS2 × S2 × T 6 case when υ = P24υ that

(P8Γ
a′υ)α (Γa′υ)

β = −1

4
(P8C)αβ υυ − 1

4
(P8γ5)

αβ υγ5υ − 1

4
(P8Γ

aγ5)
αβ υΓaγ5υ

− 1

4
(P8Γ

aγ7)
αβ υΓaγ7υ − 1

8
(P8Γabγ7)

αβ υΓabγ7υ

− 1

4
(P8Γab′γ5)

αβ υΓab′γ5υ − 1

8
(P8Γabc′)

αβ υΓabc′υ . (D.16)

These identities were used in many places in the calculation of the curvature of the Lax
connection.

E Check of the closure of H in AdS2 × S2 × T 6

The NS–NS three-form superfield strength in the AdS2 × S2 × T 6 background is given by

H = −iEA EΓAΓ11E + iEBEA EΓABΓ11λ+
1

3!
ECEBEAHABC

= −ic2EA EΓAΓ11E − 2ic4ÊA EΓAΓ11Dυ − ic4EADυΓAΓ11Dυ

+
ic4

R
EA

(

υΓBγ⋆γ7υ EΓABγ5E − υΓBγ⋆Γ11υ EΓABE + υΓABγ⋆υ EΓBΓ11E

− υΓbc′Γ11υ Eγ⋆ΓAΓbc′E +
1

2
υΓbcd′υ EΓ11γ⋆ΓAΓbcd′E

)

+
2c4

R
ÊBÊAEΓABΓ11γ⋆υ

+
2c4

R
EBEADυΓABΓ11γ⋆υ +

c6

3!
ECEBEA HABC +O(υ3) , (E.1)

where EA and HABC are given is (3.7) and (3.10) respectively, and ÊA = EA + 2iυΓAE. We
wish to demonstrate that this form is indeed closed.

After a bit of algebra using the torsion equation (2.1) and Fierz identities one finds

1

c4
dH =

2i

R
ÊB EΓAEEΓABΓ11γ⋆υ +

2i

R
ÊB EΓABEEΓAΓ11γ⋆υ − 2i

R
ÊB EΓ11EEΓBγ⋆υ

+
4i

R
Eb′ υΓa′EEΓa′b′Γ11γ⋆∇υ +

8i

R
EB EΓa′DυEΓa′BΓ11γ⋆υ − 2i

R
EaEΓaΓ11EDυγ⋆υ

+
2i

R
Eb υΓaDυEΓaΓ11γ⋆ΓbE − iÊB (ΩAB − Ω0AB)EΓAΓ11E − 2iEA DυΓAΓ11∇Dυ

− 2iEB (ΩAB − Ω0AB)EΓAΓ11Dυ − 4

R
ECEB (ΩAB − Ω0AB)EΓA

CΓ11γ⋆υ

+
4

R2
Ea′Ec υΓb′E EΓa′b′cΓ11υ +

i

R
EA∇

(

υΓBγ⋆γ7υ EΓABγ5E − υΓBγ⋆Γ11υ EΓABE

+ υΓABγ⋆υ EΓBΓ11E − υΓbc′Γ11υ Eγ⋆ΓAΓbc′E +
1

2
υΓbcd′υ EΓ11γ⋆ΓAΓbcd′E

)

+ d

(

2

R
EBEADυΓABΓ11γ⋆υ +

c2

6
ECEBEAHABC

)

. (E.2)
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The terms in the first line vanish due to the Fierz identity (D.12). Using the expressions for
ΩAB and HABC given in (3.8) and (3.10) and simplifying further this becomes

− 1

R2
ECEb′ EΓAE υγ⋆Γb′ΓAΓ11(1− P )ΓCγ⋆υ + . . .

+
2

R2
Eb′Ec EΓcγ⋆Γa′υ EΓ11γ⋆Γb′Γa′υ +

2

R2
Eb′EcEΓcΓ11γ⋆Γa′υ Eγ⋆Γb′Γa′υ

− 4

R2
Eb′Ec EΓa′υ EΓb′cΓ11Γa′υ − 8

R2
EBEcEΓcγ⋆γ

a′υ EΓBΓ11γ⋆Γa′υ

− 2

R2
Eb′Ec EΓc

âE υΓâb′Γ11υ − 2

R2
Eb′EcEγ7E υΓcb′γ5υ − 1

R2
Eb′EcEΓaΓ11E υΓcab′υ

− 2

R2
EBEcEΓaΓ11E υγ⋆ΓcaBγ⋆υ +

2

R2
EBEcEΓaE υγ⋆ΓcaBΓ11γ⋆υ

− 1

R2
Eb′Ec EΓaE υΓcab′Γ11υ +

2i

R
Ea′ EΓbĉE υΓa′bĉγ⋆Γ11∇υ +

2i

R
EaEΓabE υγ⋆Γ

bΓ11∇υ

+
2i

R
EaEΓabγ5E υγ⋆Γ

bγ7∇υ +
4i

R
Eb′ υΓa′EEΓa′b′Γ11γ⋆∇υ +

8i

R
EB EΓa′∇υ EΓa′BΓ11γ⋆υ

+
4i

R
Eb′ υγ⋆Γa′b′E EΓa′Γ11∇υ − 3i

R
Ea′ EΓbE υγ⋆Γa′bΓ11∇υ − 3i

R
Ea′ EΓbΓ11E υγ⋆Γa′b∇υ

− i

R
Ea′ EΓbE υΓa′bγ⋆Γ11∇υ +

i

R
Ea′ EΓbΓ11E υΓa′bγ⋆∇υ − 2i

R
EbEΓaE υγ⋆ΓbΓaΓ11∇υ

− 2i

R
Eb EΓaΓ11E υγ⋆ΓbΓa∇υ +

2i

R
EAEΓ11E υγ⋆ΓA∇υ − 2i

R
EAEγ7E υγ⋆γ5ΓA∇υ

+
4i

R
Ea′ Eγ7E υγ⋆γ5Γa′∇υ , (E.3)

where the ellipsis in the first line denote three terms which, together with the previous term,
cancel due to the Fierz identitity (D.11). Using the Fierz identity in (D.16) the terms with
two bosonic vielbeins can be seen to cancel and we are left with

2i

R
Ea′ EΓbĉE υΓa′bĉγ⋆Γ11∇υ +

2i

R
EaEΓabE υγ⋆Γ

bΓ11∇υ +
2i

R
EaEΓabγ5E υγ⋆Γ

bγ7∇υ

+
4i

R
Eb′ υΓa′E EΓa′b′Γ11γ⋆∇υ +

8i

R
EB EΓa′∇υ EΓa′BΓ11γ⋆υ +

4i

R
Eb′ υγ⋆Γa′b′E EΓa′Γ11∇υ

− 3i

R
Ea′ EΓbE υγ⋆Γa′bΓ11∇υ − 3i

R
Ea′ EΓbΓ11E υγ⋆Γa′b∇υ − i

R
Ea′ EΓbE υΓa′bγ⋆Γ11∇υ

+
i

R
Ea′ EΓbΓ11E υΓa′bγ⋆∇υ − 2i

R
Eb EΓaE υγ⋆ΓbΓaΓ11∇υ − 2i

R
Eb EΓaΓ11E υγ⋆ΓbΓa∇υ

+
2i

R
EAEΓ11E υγ⋆ΓA∇υ − 2i

R
EA Eγ7E υγ⋆γ5ΓA∇υ +

4i

R
Ea′ Eγ7E υγ⋆γ5Γa′∇υ . (E.4)
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We now use the fact that

2i

R
Ea EΓabE υγ⋆Γ

bΓ11∇υ +
2i

R
EaEΓabγ5E υγ⋆Γ

bγ7∇υ

=
2i

R
EaEΓaΓBE υγ⋆Γ

BΓ11∇υ + . . .+
2i

R
EaEγ5ΓaΓBE υγ⋆Γ

BΓ11γ5∇υ + . . .

+
4i

R
Ea υγ⋆Γ

b′ΓaE∇υΓb′Γ11E − 4i

R
Ea υγ⋆Γ

b′ΓaΓ11E∇υΓb′E

− 2i

R
EaEΓ11E υγ⋆Γa∇υ − 2i

R
EaEγ7E υγ⋆Γaγ5∇υ

=
4i

R
Ea υγ⋆Γ

b′ΓaE∇υΓb′Γ11E − 4i

R
Ea υγ⋆Γ

b′ΓaΓ11E∇υΓb′E

− 2i

R
EaEΓ11E υγ⋆Γa∇υ − 2i

R
EaEγ7E υγ⋆Γaγ5∇υ , (E.5)

where the first ellipsis denote the 5 terms which together with the previous term cancel due
to the Fierz identity (D.11) and similarly for the second ellipsis. This leaves us with the
following terms in dH

− 2i

R
EB EΓAE∇υΓAΓ11ΓBγ⋆υ + . . . − i

R
Eb′ EΓAE∇υΓAΓ11Γb′γ⋆υ + . . .

− i

R
Eb′ EΓAE∇υγ⋆Γb′ΓAΓ11υ + . . . +

2i

R
Eb′ Eγ⋆Γb′Γ

AE∇υΓAΓ11υ + . . .

+
4i

R
Eb′ Eγ⋆Γa′b′υ∇υΓa′Γ11E +

4i

R
Eb′ Eγ⋆Γa′b′Γ11υ∇υΓa′E

+
2i

R
Ea′ EΓbĉE υΓa′bĉγ⋆Γ11∇υ − 2i

R
Eb′ Eγ⋆Γ11E∇υΓb′υ − 2i

R
Eb′ EγE∇υΓb′γ5υ

+
2i

R
Eb′ EΓ11E υγ⋆Γb′∇υ +

2i

R
Eb′ Eγ7E υγ⋆Γb′γ5∇υ . (E.6)

Again the ellipsis denotes terms which cancel together with the previous term due to (D.11).
Using the relation

2i

R
Ea′ EΓbĉE υΓa′bĉγ⋆Γ11∇υ

= − i

2R
Eb′ Eγ⋆Γ

caΓ11E∇υΓacb′υ − i

2R
Eb′ Eγ⋆γ5Γ

caΓ11E∇υΓacb′γ5υ

= − i

2R
Eb′ Eγ⋆Γ

cΓAΓ11E∇υΓAΓcb′υ + . . .− i

2R
Eb′ Eγ⋆γ5Γ

cΓAΓ11E∇υΓAΓcb′γ5υ + . . .

− 4i

R
Eb′ Eγ⋆Γa′b′υ∇υΓa′Γ11E − 4i

R
Eb′ Eγ⋆Γa′b′Γ11υ∇υΓa′E

+
2i

R
Eb′ Eγ7E∇υΓb′γ⋆γ5υ +

2i

R
Eb′ EΓ11E∇υΓb′γ⋆υ

+
2i

R
Eb′ EγE∇υΓb′γ5υ +

2i

R
Eb′ Eγ⋆Γ11E∇υΓb′υ

= −4i

R
Eb′ Eγ⋆Γa′b′υ∇υΓa′Γ11E − 4i

R
Eb′ Eγ⋆Γa′b′Γ11υ∇υΓa′E

+
2i

R
Eb′ Eγ7E∇υΓb′γ⋆γ5υ +

2i

R
Eb′ EΓ11E∇υΓb′γ⋆υ

+
2i

R
Eb′ EγE∇υΓb′γ5υ +

2i

R
Eb′ Eγ⋆Γ11E∇υΓb′υ , (E.7)
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we see that also the last remaining seven terms in dH cancel. This completes the proof that
the NS–NS three-form we have constructed for AdS2 × S2 × T 6 is indeed closed.
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