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Abstract

In this paper we continue the study, initiated in [I} [2], of the classical integrability of
Green—Schwarz superstrings in AdSy x CP? and AdS, x S? x T superbackgrounds whose
spectrum contains non—supercoset worldsheet degrees of freedom corresponding to broken
supersymmetries in the bulk. We derive an explicit expression, to all orders in the coset
fermions and to second order in the non—coset fermions, which extends the supercoset
Lax connection in these backgrounds with terms depending on the non—coset fermions.
An important property of the obtained form of the Lax connection is that it is invariant
under Z4—transformations of the superisometry generators and the spectral parameter.
This demonstrates that the contribution of the non—coset fermions does not spoil the
Z4—symmetry of the super—coset Lax connection which is of crucial importance for the
application of Bethe—ansatz techniques. The expressions describing the AdS,; x CP? and
AdSy x §? x T® superstring sigma-models and their Lax connections have a very similar
form. This is because their amount of target—space supersymmetries complement each
other to 32 = 24+8, the maximal number of 10d type II supersymmetries. As a byproduct,
this similarity has allowed us to obtain the form of the geometry of the complete type ITA
AdSy x 5% x T superspace to all orders in the coset fermions and to the second order in
the non—coset ones.
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1 Introduction

In this paper we continue the study of the classical integrability of Green—Schwarz super-
strings in AdS,; x CP? and AdS; x S? x T superbackgrounds, whose spectrum contains
non-supercoset worldsheet degrees of freedom, initiated in [1I 2].

The integrability properties of superstrings on semi-symmetric coset superspaces G/H
with Z4—grading are, by now, very well understood. The prescription for constructing a Lax
representation of the equations of motion of 2d sigma—models on the supercoset G/H (that
generates an infinite set of conserved charges) has been proposed in [3] and applied to various
concrete examples [4] including the maximally supersymmetric type IIB AdSs x S® superstring
whose target superspace is % and an %% sigma—model [5], [6] which is a
kappa—symmetry gauge—fixed sub—sector of the Green—Schwarz superstring on a type ITA
AdS, x CP3 superspace [7]. Other examples of interest, in particular in the AdS/CFT context,



PSU(1,1|2)x PSU(1,1]2)
SU(L)=SU(2)

AdS3 x S and on Solﬁ?é;fgég()igg)(s) having AdS3 x S3 x S2 as its bosonic subspace [§].

These cases are related to 10d superstrings compactified on AdS3 x S3 x My (where My is
T* or S3 x S1) that preserve 16 target-space supersymmetries. Another example, which we

will consider here, is a superstring on the coset superspace % with the 4d bosonic
subspace AdS, x S? and eight supersymmetric Grassmann-odd directions. This model is a
consistent truncation of a 10d Green—Schwarz superstring on AdSs x S% x T6 or AdSy x S? x
CY?3 (see [2] for more details and references). It is useful to have a supercoset description
which captures the full 10d bosonic geometry of AdS, x S? x TS rather than a truncation
to 4d. This can be achieved by noting that AdS, x S? x RS, with eight fermionic directions,
is described by the supercoset SOP(”T’({) i’ga))i%(g)@, where the semi-direct product with E(6),
the Euclidean group in six dimensions, accounts for the RS factor. Since AdS, x S? x TO is
locally the same as AdSs x S? x R®, and we will only be interested in the local geometry, this
gives us a (local) supercoset description of AdSs x S? x T©.

Among the above examples only the AdS5 x S° superstring is maximally supersymmetric
in the 10d target space. Its number of supersymmetries and corresponding strmg fermionic
modes is 32 coinciding with the number of Grassmann—odd directions of S(f(f[i)iélé)(&;)
other words, all the worldsheet fermionic modes of the AdSs x S string are in one to one
correspondence with the Grassmann directions of the supercoset space which fully describes
the supergeometry of the type IIB AdSs x S° supergravity solution. As a consequence, the
prescription of [3] for the construction of a zero—curvature Lax connection from the Z4—graded

components of the Cartan form on % demonstrates the classical integrability of

are string sigma-—models on whose bosonic body is the 6d symmetric space

In

th]e__l bfull Green—Schwarz superstring in the AdSs x S° superbackground which coincides with

Other, less supersymmetric, cases turn out to be more involved. For instance, the Green—
Schwarz superstring on AdS; x C'P3 is invariant under 24 target-space supersymmetries that
generate the superisometry group OSp(6[4). The type IIA superspace, in which the string
moves, has 32 fermionic directions while the supercoset #gi‘?}(g) only has 24. This means
that only 24 of the 32 fermionic modes on the string worldsheet can be associated with the
supercoset Grassmann—odd directions, while the 8 remaining fermionic modes (corresponding
to broken target—space supersymmetries) do not have this group—theoretical meaning. In fact,
the complete type IIA AdS, x C'P? superspace is not a supercoset, though it has the O.Sp(64)
isometries. Its geometry is much more complicated and reduces to that of % only
in the sub—superspace in which the 8 non—supersymmetric fermionic coordinates are put to
zero [7]. In the Green-Schwarz superstring sigma-model on AdSy x C'P3 superspace these
eight non—supercoset fermionic modes can be put to zero by partially gauge fixing the kappa—
symmetry for almost all classical configurations of the string. This however is not possible
when the string motion is restricted to the AdSy subspace [0, [7] or when the string forms
a worldsheet instanton by wrapping a C P! cycle in CP? [9]. In these cases the supercoset
kappa—symmetry gauge is inadmissible, and the non—coset fermions carry physical worldsheet
degrees of freedom[] As a result, the construction of a Lax connection of the Green—Schwarz
superstring in the full AdS, x C P? superspace, in general, should include the contribution of
the non—coset fermions which will thus modify the form of the supercoset Lax connection of

!Subtleties of gauge fixing kappa-symmetry in a way consistent with the light—cone gauge in a near plane—
wave limit of AdSs x CP? has been discussed in [10].



[5L [6] by terms whose structure is not captured by the prescription of [3].

The situation becomes even more interesting and complicated in less supersymmetric
cases such as strings on AdSs; x S x My and AdS, x S? x TS. For instance, as we have
already mentioned, in AdSy x S? x T only 8 target-space supersymmetries corresponding
to the Grassmann—odd directions of SOP(i[{)(i#?I))NX?Sg)(G) are preserved and hence the other 24
fermionic modes of the Green—Schwarz superstring cannot be associated with the supercoset.
Moreover, since there are only 16 kappa—symmetries, they can gauge away not more than
16 of these fermions, so that at least 8 of the non—coset worldsheet fermions carry physical
degrees of freedom and will always contribute to the structure of the Lax connection of the
complete 10d theory.

To deal with the non—coset fermions, an alternative prescription for constructing Lax
connections has been proposed in [I]. It uses the Noether currents of the isometries of the
(super)background as building blocks of the Lax connection and can thus be applied to more
general cases than the G/H sigma-models with Zs—grading. Using this procedure, zero—
curvature Lax connections for superstrings on AdSy x CP? and AdS; x S? x T% have been
constructed up to second order in the 32 fermionic modes, respectively, in [I] and [2]. In
addition, in [I] a Lax connection to all orders in non—coset fermions has been constructed in a

special kappa-symmetry gauge of [L1] in the sub-sector of the AdSy x C'P3 superstring which
OSp 6\4)

cannot be reduced to the 5757775 supercoset, thus providing evidence for the classical
integrability of the complete t eory

When the non—coset fermions are put to zero, the Lax connections of [1} 2] are related to
those of [3, 14, [5, 6] (truncated to the second order in the coset fermions) by a superisometry
gauge transformation that depends on the spectral parameter [I]. To understand how the
presence of the non—coset fermions modifies e.g. the algebraic curve constructed with the use
of the Zs—graded supercoset Lax connection and, hopefully, to reveal a role of the non—coset
fermionic and bosonic modes in the corresponding Bethe—ansatz techniques, it seems useful
to have at hand an explicit expression which demonstrates how the Z,—graded supercoset Lax
connection gets generalized by terms depending on the non—coset fermions. In this paper we
provide such an expression for the Lax connections of the superstring on AdS; x CP? and
AdSs x 5% x T6 to all orders in the coset fermions and up to the second order in the non—coset
fermions. Interestingly enough, the Lax connections of the AdS,y x CP3 and AdSy x S? x T©
superstrings have formally a very similar form. This is because their numbers of target—
space supersymmetries complement each other to 32 = 24 + 8, the maximal number of 10d
type II supersymmetries, and the projectors which split 32—component fermions into 24— and
8—component ones are the same in both of the cases.

This similarity actually has helped us to guess the form of the AdS, x S? x T% Lax
connection upon having constructed the AdSy x C' P3 one using the knowledge of the complete
AdS, x CP3 supergeometry and the superstring equations of motion. As a byproduct, this
has also allowed us to get corrections due to the non—coset fermions to the geometry of the

Solj(iq)(i’[l]‘(zl))ig(g)(& supercoset thus obtaining the form of the geometry of the complete type

ITA AdS5 x S? x TS superspace to all orders in the coset fermions and to the second order in the

non—coset ones. These results make explicit the general discussion of [2] about the structure
PSU(1,1]2)
SOLLXU(D)
consistent truncation of the complete 10d superstring action on AdSs x S? x T6.
An important property of the obtained form of the Lax connection is that it is invariant

under the Z4 transformations of the superisometry generators provided that the spectral

of the AdSy x S? x T supergeometry which ensures that the sigma—model is a



parameter x gets replaced with its inverse i This demonstrates that the contribution of
the non—coset fermions does not spoil the Zs—symmetry of the supercoset Lax connection
which is of crucial importance for the Bethe ansatz equations, both classical and quantum
[12, 13} 8, [14].

The paper is organized as follows.

In Section 2 we explain our conventions and notation and describe some general properties
of the supercoset Lax connection, and the relation of its zero curvature condition to the
equations of motion of the corresponding 2d dynamical system.

In Section 3 we extend the supercoset Lax connection with contributions coming from the
string fermionic modes associated with broken targetspace supersymmetries. In Section [3.1]
we sketch the construction of the Lax connection of the AdSy x CP3 superstring starting from
that of the % sigma—model and modifying it with terms containing the non—coset
fermions (which we call v) in such a way that the zero—curvature condition is satisfied order
by order in v if the worldsheet fields obey the superstring equations of motion.

In Section we pass to the consideration of the AdSy x S% x T case and assume that
its Lax connection has a similar form to that of the AdSs x C'P? superstring but with the
role of the coset and non—coset fermions interchanged and with an appropriate redefinition
of the form of the gamma-matrices involved in the construction. We then require that this
Lax connection has zero curvature, derive from this condition the equations of motion of the
AdSy x 8% x TS superstring and reconstruct the geometry of its target superspace. Namely,
we find the bosonic and fermionic vielbeins, the spin connection and the NS-NS three—form
superfield strength of the AdSs x S? x T superspace to all orders in the fermions parametrizing
the supercoset SéDSU(l’m)XE(G)

1,1)xU(1)x50(6)

In Section 4 we demonstrate that the obtained Lax connections are invariant under the
Z4—transformations and discuss their relation to conserved currents and the Lax connections
constructed in [I} [2].

In the Conclusions we discuss open problems, possible generalizations and applications of
the results obtained.

and to the second order in the non—coset fermions.

2 Setting the stage

2.1 Main notation and conventions

We use the metric with the ‘mostly plus’ signature (—,+,--- ,+). Generically, the tangent
space vector indices are labelled by letters from the beginning of the Latin alphabet, while
letters from the middle of the Latin alphabet stand for curved (world) indices. The spinor
indices are labelled by Greek letters from the beginning of the alphabet, while their curved
(world) counterparts are denoted by letters from the middle of the Greek alphabet.

The bosonic coordinates of the ten—dimensional type IIA target superspace in which the
string moves are denoted by XM (M =0,1,---,9) and the Grassmann—odd coordinates are
denoted by ©# (u = 1,---,32). Since we consider the string sigma—model we shall always
assume that X and ©# depend on the string worldsheet variables ¢ = (7, 0).

The geometry of the target superspace is encoded in the form of the vector £4(X,©) and
spinor £%(X, ©) supervielbeins, and spin connection Q48 (X, ©). In the string sigma-model
these one—forms are pulled back on the string worldsheet, which will always be implicit in what
follows, e.g. £4(X,0) = d¢ (0, XM ENA(X,0) + 9,01,4(X,0)). The 10d supergeometry is



subject to the basic torsion constraint which we choose to be

TA = deA + EBQpA = —ifTAE + i1 EN + égf‘ EB OB ¢ (2.1)
and the NS-NS three—form superfield strength is constrained as in [I1]

H = —iEAET AT 1€ +iEPEAET opT 1 N + %50519# Hupc (2.2)

where A\, (X, 0) is the dilatino superfield, ¢(X, ©) is the dilaton and 94 = E4M 0y + Eat 0.
The dilatino superfield is not independent but is proportional to the spinor derivative of the
dilaton [15] ' '

Ao = —% Oo & = —% (EaM 0010 + £.10,10) - (2.3)

The matrices E4M, E4*, ete. in the definition of d4 and 9, are the inverse supervielbeins.

We shall consider classical superstrings in AdSy x CP3 and AdS, x S? x T superback-
grounds of type IIA supergravity. As we will see many expressions turn out to be very similar
which allows us to treat both cases simultaneously. Nevertheless, strings in the AdSy x S? x T
superbackground of type IIB supergravity can also be treated in a similar fashion with only
slight modifications of our formulas due to the same chirality of the 10d Majorana—Weyl
spinors (see [2]).

AdS4 x CP3? is parametrized by the AdS; coordinates ™ (m = 0,1,2,3) and the CP3
coordinates y™ (m/ = 4,5,6,7,8,9). The vielbeins along AdS, are e®(z) = dz™ e,,%(x)
(a =0,1,2,3) and along CP? are e (y) = dy™ e,y (y). The 10d vielbein is then e4(XM) =
(e(x),e” (y)).

The AdS, curvature is

C 8 C al a
Rabd:ﬁ [a(sb}, Rb:——e €b7 (24)

where R is the CP? radius or twice the AdS, radius, and the CP? curvature is

! g/ 2

Ry = R2 (S S0y + i T ™ + T ), (2.5)

[a
where J¢Y is the Kihler form on C'P3.

AdS2 x 8% x T® is parametrized by the AdSs coordinates ™ (m = 0,1), the S? coordi-
nates ™ (1 = 2,3) and those of T y™ (m' =4,5,6,7,8,9). The corresponding vielbeins
are e = dz™ ep,*(z) (a = 0,1), e = daz" e,;,%(2) (a = 2,3) and e (y) = dy® . We will often
combine the AdSs and S? indices into a = (a,a) = 0,1,2, 3.

The AdSs curvature is
4

8
cd c gd ab a b
Rab = ﬁ [a 61)} s R = _ﬁ e e, (26)

where R is twice the AdSy (or S?) radius, and the S? curvature is

a5 8 L s o o
éd ¢ ¢od ab a b
R&i) = _ﬁ (5[& 513] s R® = ﬁ e e . (27)

5



The 10d curvature of AdSs x CP3 and AdSs x S? x T is denoted by R45°P.
The D = 10 gamma-—matrices satisfy

{r4, 18y =298 1A= 1Y), a=0,1,23 d=4,---,9. (2.8)

We also define

5 = ,L'F0123’
Np = D678
'n = 97, (2.9)

all of which square to one. The charge conjugation matrix is denoted C. The matrices C,

where the indices are eleven dimensional, A = (A,11).
Finally we introduce a spinor projection matrix Pg which singles out an 8-dimensional
subspace of the 32-dimensional space of spinors
1 1
Ps = (2= idJuyl* Y47, (2.10)
where J,y is the Kéhler form on CP? or T6. The complementary projection matrix which
singles out a 24—dimensional subspace is then

1 . 13/
Poy=1-Pg= g(6 + iy D47y (2.11)

Some useful identities satisfied by the gamma matrices and these projectors are given in
Appendix [Dl
In the AdSy x C'P3 case Poy singles out from ©¢ 24 fermionic coordinates

¥ = PO

corresponding to the unbroken supersymmetries and, hence, to the Grassmann—odd directions

of the supercoset %%, while the remaining eight

v = PgO

are non—supercoset fermions.
In AdSs x S? x T the role of the two projectors gets exchanged. Pg singles out from O
8 fermionic coordinates

9 = PO

corresponding to the unbroken supersymmetries and, hence, to the Grassmann—odd directions

of the supercoset Solzf,({)(i’llj%))ig(g)(&, while the remaining twenty four

v = 7)24@

are non—supercoset fermions.

To treat the two cases simultaneously we shall always denote the coset fermions by ¥ and
the non—coset ones by v. The projector which singles out the coset fermions will be denoted
by P, namely

¥ =PO, v=(1-"P)6. (2.12)



Let us note that as solutions of the type ITA supergravity equations of motion the AdSy x
CP3 and AdS; x 82 x T% backgrounds also contain non-zero constant Ramond-Ramond F
and Fy fluxes which are implicitly encoded in the form of the projectors (2I0) and (2I1I),
namely
8i

F=-%

Py, (2.13)

where . .
F=e <—§FABF11FAB + EPABCDFABCD>

and 1, stands for 5 in the AdSy x CP3 case and for I'''y7 in the AdSy x S? x T case. The
explicit form of the RR fluxes can be found e.g. in [7] and [2]

2.2 Superstring action and equations of motion

The Green—Schwarz superstring action in a general supergravity background [16], written in
terms of worldsheet differential forms, is

T
S:——/ EAEBnAB+T/ B, (2.14)
2 3 by

where the pull-back to the worldsheet of the target—superspace quantities is understood,
the star * denotes the Hodge dual operation on the worldsheet and the wedge product of
differential forms is implicit. From this action one gets the superstring equations of motion
which have the following form for our choice of the superspace constraints, eq. (2.1]) (see also
[7,[11]). The fermionic field equations are

ma;zi*gA(rAgﬁx—ieA(rArugyx+-%*gAeAAa4-%5A53(PABPHAL,ZO, (2.15)
and the bosonic field equations are
B4 = d*EA-+*EBQBA—+i*EA5A4—é@EAEBaB¢——*EBEBaA¢)
—iETAT | € — 2EP ETARI I\ + %5053 HAc =0. (2.16)

Note that in the AdSy x CP? case 04 = 0 E We shall see that it is also zero in the
AdSy x 5% x T® case to the second order in v and guess that it may also be true to all orders,
because of the similarity between the two cases.

If we put the non—supercoset fermions v to zero the equations of motion (2Z.I5]) and (2Z.16])

reduce to those of the sigma—models on Soo(f ggilﬁ(g) and S(if({)(i’lljl(?)xxg(g)((i) , respectively, with

2To be precise, eq. (m) holds for the AdSs x S% x T° background with a non-zero F4 and F» flux such
that the latter has support on S? as in eq. (3.3) of [2].

3To check that in the AdSs x CP? case da¢ = 0 one can use the fact that ¢(v) and Ao = féaaqb do not
depend on X* and 9 (see [7]), so we have

0=0m¢ = SMA(()A(ﬁ + Er“Outp = SMA(9A¢ 4+ 3iErm“Aa = 0.

If Oa¢p = 0, from the above equation it follows that the contraction of the gravitino superfield £y with the
dilatino A, of this supergravity solution is zero, Ear* Ao = 0. This can be checked using the explicit expressions
for £* and Aq derived in [7].



the equations of motion of the T coordinates decoupled in the latter case. In our conventions
the supercoset equations of motion have the following form

Voo = i%xEY(AE)y —iEY (T4T11E), =0, (2.17)
Bl = VsE*—{ET"TE=0, (2.18)

where V« FA = d« B4 + *EBQEA and Qg‘B(X , ) is the supercoset spin connection (2643 =
QA4B|,o, and EA(X,0) = ¢ 264|,=¢ and E%(X,9) = ¢ 1€ ,— (with ¢ being a constant
dilaton factor) are the supercoset supervielbeins. They are the components of the Cartan
form valued in the isometry supergroup G (i.e. OSp(6|4) or PSU(1,1]2) x E(6))

1
K =g 'dg(X,9) = §QOABMAB +E4Ps+ QuE*,  g(X,¥) € G/H. (2.19)

The algebra of the isometry generators and the explicit form of the supercoset bosonic and
fermionic supervielbeins, and the spin connection are given in Appendix A. The isometry
algebra is invariant under the following action of the Zj—automorphism on the generators
T~ (M,P,Q)

QT)=Q7'TQ  Q(Mag) = Map,  QPs)=—-Pa, Q)= —iQly, Q'=1.
(2.20)
Note that in the AdSs x S% x T case the T translation generators P, also have Z, grading
one, as those of AdSy x S2.
When the non—coset fermions are non-zero, the supercoset field equations (2.17)) and
([2.18]) acquire non—zero right-hand sides

\I/() = O(U), Bo = O(U) (2.21)

which should be taken into account when extending the supercoset Lax connection to a zero—
curvature Lax connection of the complete theory (see Section 3).

2.3 Supercoset Lax connection

The equations of motion of the superstring on the semi—symmetric supercoset spaces with
Z4—grading (2.19) and ([2.20) admit a Lax representation which implies classical integrability
of the corresponding sigma—model [3, [4, B, [6]. This means that from the components of the
Cartan form (2.19) pulled—back on the worldsheet and their 2d Hodge duals one can construct
a Lax connection (depending on a spectral parameter) which has zero curvature provided that
the equations of motion (ZI7)) and (ZI8]) are satisfied. And vice versa the zero curvature of
the Lax connection implies the field equations. In our notation and conventions the supercoset
Lax connection has the following form

1
Leoset = 5% Map + (1+ 1) B Pa+ a2 % P+ Q(B2 + HIT11) B, (2.22)

where a1, as, 51 and Py are numerical parameters whose values are determined by requiring
the zero—curvature condition

choset - Lcoset A Lcoset =0 (223)



to hold on the mass—shell (ZI7) and (ZI8). This gives the following relations between the
parameters
a5 =2a1 + ol (2.24)

and

_ 2 4 Q2
By = :F\/;, fo=to= (2.25)

They can therefore be expressed in terms of a single spectral parameter x as follows

2x2 2x X 1
T2 =73 512—7}{2_1, ﬁ2:7x2_1. (2.26)

o] =

It is very useful for further analysis to specify the properties of the 32 x 32 matrix
V=08 + BT, (2.27)
which enters the Lax connection (2.:22]). It is easily seen to satisfy the relations

VZ=l+4a—aly, VVIi=ps-p=1, (VI)*=—-(CVTC)% = (B2 — iT11)%,
(2.28)
where C denotes the anti-symmetric charge-conjugation matrix (see Section 2.1]). Therefore
V e Sp(32).
It is easy to check that the Lax connection ([2.22]) is invariant under the Zs—transformations
of the generators (2.20]) accompanied by the inversion of the spectral parameter

1
Ox) = =, (2.29)
X
which implies that
o] — —Qo] — 2, g — —Q9, V — iFnV . (2.30)

Namely,
_ 1
Q(Lcoset(x)) =Q choset(;) Q= Lcoset(x) .

Note that in the AdSy x S? x T case the first term of (2:22)) may in general include the
SO(6) spin connection on T whose curvature is zero. Therefore, it can be gauged away by
performing a suitable gauge transformation of L .ys¢, and the resulting Lax connection will
contain only terms associated with the U(1)% ‘translations’ P, along T° which completely
decouple from the PSU(1,1|2) part and, therefore, can be taken with arbitrary coefficients.

The explicit dependence of the supercoset Lax curvature on the left-hand sides of the
supercoset field equations (2.I7) and (2I8]) looks as follows

1
dLcoset — Leoset N Leoset = a2(864PA - EQVTW*\I]O) ) (231)

where again v, stands for 4% in the AdS,; x CP? case and for I'%'y7 in the AdSy x S? x T©

case (see eqs. (2.9) and (A4).



3 The Lax connection of the complete GS superstring to quadratic
order in non—coset fermions v

We are now ready to extend the supercoset Lax connection (2.22]) with terms that include
contributions from the string fermionic modes v associated with broken target—space super-
symmetries

L = Lepser(X,09) + oL/ (X, 9,0), (3.1)

where the factor of ay in front of L’ is due to the same factor on the right-hand side of (2.3T]).
The correction L’ which is aimed at canceling the r.h.s. of (2:31]), turns out to take the same
form for both the AdS,; x C'P3 and AdSs x S? x T6 case and looks as follows

L = —%Q% [%(E4 + 20ivl* E) T4V — (B4 + 200D E) D AT Vol
—}%ny* [i(uT AT 11 E) T4V + i (0T A E) 4T V]
+ (2i0l % E 4 ivT? % Vo — % s« BB uTAP~,Tgu) Py
+ (200l T 1 E + 90l Vo — }%EB vl AT Py, T gv) Pa
+ é(*EC vLePPV2y — EC 0T o PET 1 V20) Rpp?P Mg, (3.2)

where the matrix V' has been introduced in (Z2T7)), and 74, P and Rpp“? are defined for
AdSy x CP3 and AdSs x S% x T® in Section 2.1 and Appendix [Al The covariant derivative
is defined with respect to the supercoset spin connection QS‘B = Q4B g, ie. Vo = (d—
%QS‘B Tap)v.

To construct L'(X,9,v) one had to know the form of the right-hand sides of eqs. (ZI7))
and (2I8). For the AdS,; x C'P? case these can be given to all orders in v since the explicit
form of the geometry of the AdS; x CP? superspace is known [7]. Because of technical
complications, we have however restricted the construction of the Lax connection to the
second order in v only.

In the AdSy; x S? x TO case the explicit form of the geometry of the complete target
superspace is not know, so our strategy was somewhat opposite to that of the AdS, x CP3
case. We have assumed that in the AdSs x S? x T case the Lax connection has a similar form
to the AdS; x CP? Lax connection, i.e. eq. ([B3.2) with the appropriate replacement of the
supersymmetry projector P and the product of gamma-—matrices v, appearing in the definition
of the isometry superalgebra (see Appendix [A]). Then, requiring that the AdSy x S% x T Lax
connection has zero curvature we have reconstructed the superstring equations and the form
of the AdSs x 8% x T superbackground up to the second order in the non-coset fermions and
checked that it indeed satisfies the constraints of type ITA supergravity.
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3.1 AdS, x CP? case

Taking the expressions for the quantities defining the full AdS; x CP? supergeometry [7] and
expanding them to the second order in v we get

1
g4 = 2 - Ev75v)(EA + 200l E + il Do) + O(v%),

1 1 1
PE = c(1— ﬁvfbvaj Iy + EUF%?U Iyl + g% v5)E + O(?),
(1-P)E = cDv+0?)),

2
A= é’y% + 0%,
122 3
Hupe = _@Urabcrllv + O(U )a (33)

1/4
where ¢ = 5% = (%) , ¢o is the value of the dilaton for the AdS; x C'P3 supergravity

solution, k is the ‘Chern—Simons’ level, [, is the 11d Planck length and

Dv = (V + %Ea Vsl a)v. (3.4)
Remember that in the above expressions E4(X,9), E*(X,?) and Q4'P(X,9) are the com-

ponents of the Cartan form of the supercoset %% (see Section 2J] and Appendix

[A22). Note also that though in the background under consideration the purely bosonic part
of the NS-NS flux Hypc(X) is zero, its superfield extension is non—trivial and depends on
the non—coset fermionic coordinates.

We can now insert the expressions ([8.3]) into the complete equations of motion (2.15]) and
(2.16) and thus find the corrections to the supercoset equations (2.21I]). For this we should
also know the form of the spin connection Q45(X,9,v) which was not derived in [7]. The
expression for QA48 (X,9,v) can be obtained by analyzing the torsion constraint (2.1I) and has
the following form to the second order in v

2 AN) ) AN
OAB = QAB | E< — 645BuT VY 5 B + A6 uT s Du + %5?,55 ol
2 ) / /
— Zolte B ure o) + O, (3.5)

Notice that (due to the last term in (B.5])) the spin connection takes values in the whole
D = 10 Lorentz algebra so(1,9) rather than in the stability subalgebra so(1,3) & u(3) of the
bosonic coset AdSs x CP3. This reflects the fact that the complete AdS, x C'P? superspace
is not a supercoset.

The explicit form of the corrections to the equations of motion (2.I7) and (2.I8]) are given
in Appendix [Bl Thus, the correction L’ to the supercoset Lax connection which cancels the
contributions of the right—hand sides of these equations to the Lax curvature (2.31]) has been
found to be eq. (B.2).

3.2 AdS,; x S? x T® Lax connection and supergeometry

We now pass to the consideration of the AdSy x S? x T case. As we have already mentioned,
a problem that we meet is that here the explicit form of the corresponding 10d superspace
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with 32 fermionic directions is unknown. What is known is the supercoset structure of its
sub—superspace obtained by putting to zero 24 fermionic coordinates v and, on the other
hand, the structure of the complete AdSy x S? x T superspace to the second order in the
32 fermions © (see [2] for more details and references). Our goal is to take a step further
and to find the explicit form of the AdSs x S? x T% superbackground to all orders in the 8
coset fermions ¥ and to quadratic order in 24 non—coset fermions v. To this end, we assume

that the AdSy x S% x T® Lax connection has the form of ([B.1)) and (3.2)) in which now Lgset

PSU(1,1]2) % E(6)
SO(L,1)xU(1)xS0(6)
and the structure of its isometry superalgebra given in Appendix [Al Namely, in (3.2) we
now take P to be the supersymmetry projector Pg and v, = I'’'~7 as in the superalgebra of
PSU(1,1]2) x E(6).

Then, requiring that the curvature of the Lax connection (8.1]) and (B.2]) vanishes, we get
the form of the superstring equations (ZI5) and (ZI6) in AdSs x S? x T as a deformation of
the SOP(‘f({)(i é'?f;fg(g)@ sigma—model field equations to the second order in v and consequently
reconstruct to the same order the form of the supervielbeins, the spin connection and the
NS-NS superfield strength of the complete AdSy x S? x T% superbackground.

Using the expressions given in Appendix[C]the curvature of the Lax connection (3.1]) with
L’ given in eq. (3:2) and valued in the PSU(1,1|2) x E(6) superalgebra of Appendix [A] can

be assembled to have the following form

and L' are constructed with the use of the Cartan forms, the curvature of

) .
dL-ILL = 2 TV ety 4 %B@vra@v%) Ry M.; + cBA Py
g a cd=-Mes

y
n ém*rf‘u — P)U Py + %BB oI v Py + %BB WTAPT gy, 0 Pa

j .
— =QVIw - TBA QVIT4v — — QVIy,Tpc® oT B0

4R2
-3 RQQV Yy BY TP syr0 — o RQQVW*FBPH\IJ olPy, Ty

2R2 QV Vol abr V575 ¥ i Y5U — 4R2 QV Yol aper v ¥ plabe’y,

3 R2 < I°0 QVy 1, Lgne ¥ + vl 0 QVA Ty 7. ¥

+ 20T 3,10 QVT ¥ + 20T 3,0 QVT Ty, 0) | + 0%),  (3.6)
where, if the curvature is zero, ¥, and B4 should vanish and hence should coincide with the
equations of motion of the AdSy x % x T superstring.

Comparing the form of these ¥, and B# with the Green-Schwarz superstring equations
(ZI5) and (ZI6) we find that the AdSs x S? x TS supergeometry is described by the following
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supervielbeins, dilatino and spin connection

1
&4 = A+ EU’Y*U)(EA + 20T A E 4 ivTA Do) + O(v?)

1 1 1
PE = C,P(l + —UFB")/*"WU FB")/7 — —UFB’)/*PHU I'pl'y; — —UPBC"}/*U FBc)E + O(Ug)

2R 2R AR
1 1 1
(1-P)E = ¢Dv+(1- ’P)(E’UFB’Y*’)WU I'gvyr — EUFB’)/*FHU I'gl1 — EUFBC’Y*U T'n
1 1 :
— ﬁvféc IyoyIpe T — EUF@C[ UYL pear ) E] + O(v3)
o
X = o+ 0,
P w1 1
Q4B = 4B _ Eégf‘éf}m*ra o EUF[A(l — P)TBlv, Du — Em*r[f‘u — P)TE Do
+ éaﬁj‘aﬁ EC T (1 — P)IY 4, Tem,v + éaﬁ;‘aﬁ E° ol prt'ey
2’L A B C/ a/ 2’L A B é a/
- Fsg, 6, B¢ T (1 — P)IT v + Fsg, sP B uT e 0
21 17 21 /
- R—gagf‘af} Ee ol — R—gagf‘af} EY oT%, 0 + O3, (3.8)
where
Du=(V+—EB(1—P)py)v (3.9)

R

and the constant ¢ = eé(b“, where ¢ is the dilaton vacuum expectation value of the AdSy X
S? x T supergravity solution.
Finally, the NS-NS three—form field strength turns out to be

62
HABC = ﬁ <U’y*PABCr11’y*U — 5{%4 U")/*FB’PF@FQ’Y*PHU — (5&5;} UPC]deFHv
+ 5[{1(5% Urc}dérnv) + O(UB) . (3.10)

It remains to verify that this is indeed the correct form of the supergeometry, i.e. that
the above expressions solve the supergravity constraints to the relevant order. This is not
guaranteed since they were derived from the flatness of a Lax connection which we simply
postulated. It is known that it is enough to demonstrate that the Green-Schwarz string
action possesses kappa-symmetry in order to say that the background is a solution to the
supergravity equations. This in turn simply amounts to verifying that the components of
the torsion T# and NS-NS superfield strength H have the appropriate components involving
fermionic supervielbeins whose form is dictated by the supergravity constraints (2. and
2.

Indeed, with the above choice of the spin connection (B.8]) it is not hard to verify that
the type IIA supergravity torsion constraint (2.I]) is satisfied to the quadratic order in v. As
far as the constraint ([2.2) is concerned we should substitute into it the expressions ([3.7]) and
(BI0) and check that the resulting superform H is closed. This can indeed be verified but
the calculation is somewhat lengthy and we leave the details for Appendix [El
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Thus we have constructed the supergeometry of the AdS, x S? x T® solution of type
ITA supergravity to all orders in the 8 supercoset fermions ¢ and to the second order in
the 24 non—supercoset fermions v. Although in this paper we have not obtained the RR
superfield strengths F> and Fy, which are needed for the construction of D—brane actions
in this superbackground, these can be found using the Bianchi identities, the corresponding
superspace constraints given in [I1] and the above form of the supervielbeins.

By constructing the zero—curvature Lax connection we have demonstrated that the GS
string in AdSs x S? x T is classically integrable up to quadratic order in the non-supercoset
fermions and to all orders in the coset fermions thus extending the results of [2] which con-
sidered all the fermions to the second order only.

4 Properties of the Lax connection

4.1 Z,—invariance

The Lax connection [3I]) with Leyser and L given, respectively, in (2:22)) and (3.2]) is invariant
under the Zj—transformations (2.20) of the isometry generators and the inversion of the
spectral parameter (229) and (230). This demonstrates that the contribution of the non—
coset fermions does not spoil the Zs—symmetry of the supercoset Lax connection which is of
crucial importance for the derivation of the algebraic curve and the Bethe ansatz equations,
both classical and quantum [12] 13, 8, 14]. The Zj—invariance induces the corresponding
conjugation symmetry of the monodromy matrix of the Lax connection

o! M(1/x)Q = M(x)

used for the construction of the algebraic curve E

4.2 The Lax connection and conserved currents

Let us now present an interesting observation how the Lax connection L = Leyser + oL’ can
be related to the conserved current associated with the superisometries. First of all notice
that in the limit ao = € — 0, in which
1 1
Q] = 562+O(64)’ /81 = _§€+O(62)’ 52 = 1"’0(62)’ (41)
and
V=0 +5/I'n—1, Vi=py— il =1,

the Lax connection reduces to

L=K+0O(e), (4.2)
where K (X, ) is the supercoset Cartan form introduced in (2.19).

In fact, the term denoted by O(e) in the (gauge-transformed) Lax connection is the
worldsheet Hodge dual of a superstring conserved current J associated with the background
superisometries, namely

L-K
g, (4.3)

1
«J =lim —(gLg™" —dgg™") = glim

e—0 € 0 €

4We thank Kostya Zarembo for the discussion of these points.
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where g(X, ) is the superisometry group element determining K in (2.19]).
The conservation of J, i.e. d* J = 0, follows from the flatness of the Lax connection and
the Cartan form
dL — LL =0, dK — KK =0. (4.4)

Indeed, in view of ([A2]), we have

d+xJ = glimig_l—*JgKg_l—gKg_l*J
e—0 €
L-K)K+K(L-K
= glin(l)( VK + K( )gfl—*JgKgfl—gKgfl*J:O. (4.5)
€e—> €

Note that in the case of the supercoset Lax connection (222]) (when v = 0), the current con-
structed in this way coincides with the conserved current of the G/H sigma—model considered
in 3], 5] 1]

1 _
Jcoset = g(EAPA - §QF11 * E)g ! . (46)

We can now write the correction ([B.2]) to the Lax connection in terms of (transformed)
components of the conserved current as

L'= gil * (j - Jcoset)g, (47)

where J and jcoset are, respectively, the complete conserved current (to second order in v)
(43) and the conserved current of the supercoset model (46]), and the tilde means that in
their expressions we perform the following substitutions of spinorial quantities

E > VE, Vo= Vive and v— Vo

For instance,

1 _
Jeoset = g(EAPA - 562I111‘/Jr * E)g ! . (48)
Whether this fact is of some deeper significance remains to be understood. Perhaps, a
better understanding of this could lead to a proposal for the complete Lax connection to all
orders in the non—coset fermions. We leave this problem for future analysis.

4.3 Relation to the Lax connections constructed in [1, 2]

In [1, 2] Lax connections for the superstring in AdSy x CP3 and AdSs x S? x T% have been
constructed (up to second order in fermions) using components of the Noether currents of the
corresponding superisometries OSp(6]4) and PSU(1,1|2) x U(1)% (note that only the Abelian
U(1)%—currents of the E(6) isometries enter the Lax connection)

J = Jg+ Jsusy (4.9)
where the conserved current Ji of the bosonic isometries has the form

Jg=J1 + Jo, (4.10)
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g o= <eA(X)+i®PAV®+i@FAF11*V@

2 2 _
—EeB Or4P~,I'p0 — = e Or4 Py, I'50 ) (9Pa 97" |y—0.
(4.11)
i _
Jy = 3 (eC Or48.,0 — xe¢ @FABcfll@) RaP? (g Mpr g Y)|v—o
and the supersymmetry current Jy,sy is
i _
Jsusy = 5 (9Q9™)o=0 7« (e TaT116 — ¢4 T 40). (4.12)

In (AII)) and (£12) the isometry group element (2.19) is evaluated at ¥ =0 Bl
The Lax connection constructed in [T} 2] has the following form

A =ay Jilo=o +ag x Ji + a3 Jo + az(1+ 1) * Jo — aa(BrJsusy — B * Jsusy) » (4.13)

where the coefficients o 2 and (i 2 are the same as in ([2.22)).
Now note that in the limit (£Il) the Lax connection reduces to the Hodge dual of the
conserved current (£.9))
lim LA = ] (4.14)
e—=0 €
Comparison of eq. ([AI4]) with (A3]) suggests a non-straightforward relation between the two
connections via the following gauge transformation depending on the spectral parameter and
accompanied by the shift in the X—dependence of A

AXM +i0l™M9,0) = G4(X, 0) L(X,0) G (X, 0) — dGxGx (X, 0), (4.15)

where both sides are truncated to quadratic order in fermions, T'™ = T'de,M(X) and
Gx(X,0) is an isometry supergroup element depending on the spectral parameter x, which
in the exponential parametrization has the following form

gx(XA’ (_)) _ e(XA+iUFA(1—V2)19)PA eQVﬁ h(’LA 91043) 7 (416)

where
h(ia Q4B) = o3I (1=V2)0 Qoc AP (X, 9)Mar

is a compensating gauge transformation in the stability subgroup H (i.e. SO(1,3) x U(3) or
SO(1,1) x SO(2)) of the superisometry group G.

Actually, as an independent derivation procedure, alternative to that described in Section
Bl we also got the form of the terms in L’ quadratic in fermions in the Lax connection (3.2))
by performing the inverse gauge transformation, from A to L.

Note that in contrast to (Z22]) and ([B2]) the Lax connection (£I3)) is not directly in-
variant under the Zj—transformations (2.20), (229) and (230)). In particular, its first (a;—
dependent) term acquires the shift —2e4Q(gP4g " y9—o). To get back A in its initial form the
Z4—transformed Lax connection

QA(x)) = Q_lA(i) Q

®Note that K4(X) = (gPag™")|s=o and Z(X) = 7+ (9Qg ™ ")|s=0 are simply the Killing vector and the
Killing spinor of the superisometries (see [I} [2] for more details).

5The shift X — X + ivT9 in A is required since A and L are constructed in different coordinate systems
(see Section 2 of [9] for more details about the choice of the coordinate basis).
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should undergo a compensating gauge transformation G and one finds
A=GoQA)Go' —GadGy',  where  Go = G076 Q,

Gx(X,0) is the same as in [EI5) and A is evaluated at XM + ivTMy. Of course, this gauge
transformation, which also affects the spectral parameter x, is nothing but a different form
of the relation (£I5]) taking into account the Zj—invariance of L.

4.4 Lax connection and kappa—symmetry

The Green—Schwarz formulation of the superstring is invariant under the local fermionic
transformations of the target-space coordinates ZM = (XM, ©#) which satisfy the following
properties

1
6 ZMEMT = S(1+1)% e,  a=1,---,32 (4.17)

6 ZMEMA =0, A=0,1,---,9 (4.18)

where k%(€) is a 32—component spinor parameter, %(1 + F)aﬁ is a spinor projection matrix
with 1
M= ——— AP T Ty, T2=1, (4.19)
2/—det g;;
and g;; is an induced worldsheet metric.

The string equations of motion (Z.I5) and (ZI6) transform into each other under the
kappa-symmetry variations. Since the condition for the Lax connection to have zero—curvature
is in one to one correspondence with the equations of motion, it is natural to assume that
on the mass—shell the Lax connection should be invariant under the kappa—symmetry trans-
formations, at least, modulo a gauge transformation. This is indeed so in the case of the
supercoset sigma-models (see e.g. [5]). The explicit check that also the non—coset Lax con-
nection (3.1]), (B:2]) possesses this property would be somewhat cumbersome, but fortunately
one should not do this, because there is a simple generic proof that makes this fact evident.
Indeed, since any Lax curvature depends on the left—-hand—sides of the equations of motion
(as e.g. in (237) and B.0)), its variation under (£I7)) and (£I8)) also depends on the field
equations and hence vanishes on—shell. This means that kappa—variation of the Lax connec-
tion leaves its curvature zero and, therefore, the kappa—transformed Lax connection is related
to the initial one by a corresponding infinitesimal gauge transformation taking values in the
isometry superalgebra.

5 Conclusion

We have constructed the zero—curvature Lax connections for Green—Schwarz superstrings
in AdSy x CP3 and AdSs x S? x T% superbackgrounds which generalize the corresponding
supercoset sigma—model Lax connections with contributions due to the physical world—sheet
fermionic modes associated with non—supersymmetric directions of the target superspaces.
We have shown that the contribution of the non—coset fermions does not spoil the important
property of the Lax connections being Z,—invariant and demonstrated how the obtained Lax
connections are related via gauge transformations to the Lax connections constructed in [1}, 2]
with the use of an alternative (Noether—current) prescription.
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Having at hand Lax connections which include the contribution of non—coset worldsheet
modes one can address the problem of how these modify the algebraic curve and Bethe ansatz
equations for the full superstring theory in these backgrounds. This should lead to a more
general approach to integrability of Green—Schwarz superstrings which does not rely on having
a supercoset sigma—model description of the string.

The terms in the Lax connections containing the non—supercoset fermions v have been
computed to the second order in v. An interesting and important open problem is to un-
derstand the structure of the Lax connections to all the orders in the non—coset fermions.
Presumably, the series in v (eq. ([B.2))) would converge into covariant expressions in terms of
background superfields (supervielbeins, connection etc.) as happens for the supercoset Lax
connections expressed in terms of the superisometry Cartan forms.

In the process of the construction of the Lax connections we have obtained the form of
the superfield quantities (supervielbeins, connection, NS-NS field strength and dilatino) that
describe the AdSy x S? x T superbackground to all orders in the supercoset fermions and
to the second order in the non—coset ones. We have also obtained the explicit form of the
spin connection of the AdSy x CP? superspace (to the second order in v) which was left out
in [7]. In contrast to the Green—Schwarz formulation, the knowledge of the form of the spin
connection is required, for instance, for the pure spinor description of superstrings in curved
superbackgrounds [17] and, in particular, is needed for extending to the full AdS; x CP3
superspace the supercoset pure—spinor sigma-model of [18| [19] 20]. With some more efforts,
which will be made elsewhere, one can also compute the form of the superfield strengths Fy
and Fj of the RR fluxes in type ITA AdS, x S? x T superbackgrounds and corresponding
quantities describing this superbackground in the type IIB case. These are also required
for the construction of the pure spinor string action and for studying D—branes in these
superbackgrounds.

Finally a detailed knowledge of string theory in AdSs x S? x T might shed light on the
corresponding AdSs/C FT; holographic duality which so far has not been well understood.
This correspondence is especially important due to the relation to black holes in D = 4
that have an AdSy x S? near-horizon geometry. The integrable string model considered here
could for example be used to make predictions for anomalous dimensions of operators on the
gauge—theory side which could be compared to those computed in a given candidate dual
theory.
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A Supercoset description of AdS; x CP? and AdS; x S? x T©

A.1 OSp(6/4) and PSU(1,1|2) x E(6) superalgebras

The superisometry group of AdSy x CP3 is OSp(6]4) while the (local) superisometry group of
AdSo x S?xTCis PSU(1,1|2) x E(6) (the semi-direct productﬁ] of PSU(1,1|2) with generators
(P, Mg, Q) and the Euclidean group in six dimensions with generators (P,/, My )). The
commutation relations of both the OSp(6]4) and PSU(1,1]2) x E(6) superalgebras can be
written in 10D notation as

1
[Pa, Pg| = —§RABCDMCD7 [Mag, Pc] = nacPp — npcPa
[Mag, Mcp) = nacMpp +npMac —npcMap — napMpc , (A1)

where Rap®P is the Riemann tensor of AdSy x CP3 or AdSy x S% x T© respectively, which
are given in Section 1] while the commutation relation involving fermionic generators are

[Pa, Q] = %Q’Y*FAP [Map, Q] = _%QFABP, (A.2)
{Q.Q) = 20(PPAP) P+ (PP, P) R s Mo (A3)

In these expressions 74, P and R are given by

| OSp(6]4) PSU(1,1[2) x E(6)

o AP | R , (A.4)
P Poa Ps
R | 2Ryqs, 2R A4s,
where
P — r0123 and T = 496789

A.2 Supercoset geometry

The supercoset corresponding to AdS; x CP? with 24 fermionic directions is

0Sp(6]4)
SO(1,3) x U(3)

(A.5)

while the supercoset corresponding (locally) to AdSs x S? x T with 8 fermionic directions is

PSU(1,1|2) x E(6)
SO(1,1) x SO(2) x SO(6)’

(A.6)

where F(6) is the Euclidean group in six dimensions. The supercosets are parametrized by
bosonic coordinates XM and fermionic coordinates ¥ = PO. The corresponding supercoset
geometries are described by Cartan forms satisfying the Maurer—Cartan equation

1
K(X,0) =g 'dg(X,9) = §QéBMAB +EAPA+QFE, dK=KK. (A7)

Tt is the semi-direct rather than the direct product since the fermionic generators of PSU(1,1|2) transform
under a U(1) C SO(6) C E(6) as follows from (A.2)), see also [2].
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For instance, if one chooses the isometry supergroup element in the form g(X, ) = e

the supervielbeins and spin connection are given by

. hM -1
EA = €A + QZﬁrA(DSTD’Ig,
sinh M *
B¢ = D9y
(Mxe0)
R coshM —1
AB _ AB CcD AB
QO = W + 51911 W*TD’&RCD 5
where 5 B
M? = —E(P%rm(ﬁr@) — gRABCD(FCDvﬂ)(ﬁFAny*) ,
while

) .
D9 =P(d— ;" PTap + %e“‘ T 4)0

is the Killing—spinor derivative.
From the Maurer-Cartan equation one also finds the supercoset torsion

VEA =dEA + EBQu? = —iETAE,
) .
VE = (d— 7% "Tap)E = %EA (P AE)
and curvature

1 R
d%B + Qi = (§EDEC - ZEPCDV*E)RCDAB.

PaX4 Q0

)

(A.9)

(A.10)

(A.13)

B Superstring equations of motion on AdS;xCP3 to the second

order in v

To derive the form of the corrections ([B.2]) to the supercoset Lax connection due to the
non—coset fermionic modes v we have had to compute the corresponding corrections to the

superstring field equations ([2.21]), which have the following form

Uy = ix EA(T4E) —iEA (T T E)

= —ix (20l E + vl Do) (T4E) + % « EA vy u(DAE) + A vly%y

2R

R
+ (200l E + vl Dv) (DA E) — iEA vl%0 (T 4T 11 T E)

- }%EA oDy To (DATLE) + éEA vo (T 477 E) — i % B4 (T Do)

- 1 oy 1oy n
+iEA (D41 Do) + = EAE, (7Pv) + EEAEB (T apvyrv)

20

(TATWE)

— L BAuTby Ty (DAL E) — i « BAvu (T E) — %EA vy (T AT E)

(B.1)



and
By = VxE*—iET"TE

1 2
= -V« |20l E + il Dv — EW%EA} + EADuv~%v + 2iETAT 1 Du

1 1 1
i DUTAT 1 Dv + 2iETAT 1 | —— oIy Ty + — ol o Tl — E
+1Dv 11Dv+ 20 11< 2RU Yy v b—i-Rv vy'v b11+2RUU’Y5
2 ~ 1/ ! 2 4 / !
& x BP 5$UI’“ yYsE + = * Eb6aA vy ys Du + R—ZQ x BV E%ﬁ I v
4 . 4 6i
— = EP BPpyTo — = BP Dul pyu + R—ZQECEvaabCPHU, (B.2)

where EA = BEA + 2i0TAE.

C Curvature of the Lax connection

The curvature of the Lax connection (B.1]), (8.2]) computed to quadratic order in the non—coset
fermions v can be split into three pieces corresponding to the generators in the superalgebra,
Map, Pa and Q:

dL — LL = (dL — LL)p + (dL — LL)p+ (dL — LL)q . (C.1)
With a bit of work one finds that, to order v?,

(dL — LL)y =

% [z % BAVTCPT AV2E +ix EAWICPT 4 V2V0 — i BA ol CPT 4 V2E

— i EA0TOPT AT, V2V + 4T V2E VT PT (1 E + 40TC EolPT 1 V2E
— oTAT | E ETCPPr 4 V20 — oTAE ETCPPT AT V20 + %v x EA T 4 PV20

1 4 4
— §EFAE vl A PT V20 + ik ECEAuTPV2PA, T av — EEC EAuTPVr Py T av
- % « EBEA VL g P, TCPPL AT 10 — %EBEA VL PY PP gv| Rep®F MEp(C.2)

where we have again introduced EA = EA 4 2ivTAF to shorten the expressions. The terms
in the Lax curvature proportional to P4 are

(dL — LL)p =
2|V % (B4 + il AV0) — iETAT | E — 2iETAT 1 Vo — iVoTl AT Vo

2 2 2 .

— EEB oI AT P, TRE — EEB oI T Py, Vo — = EB ETAP~,Tgv
2 2 . 2

-5 EBVul4Py,Tgu + EEB ETAP~,Ipliv + EEB Vol 4P, I'plv

2 2i 9i
— & # BP0 Py TV + EfErBEUrAFHP%PBU - EZEFBFHEUFAPV*FBU
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16
, . 0
_ % EFEP wTpBCT v Rpor™ + %EB « EF ol pPPv Rppp? — EfUPBPHE ET4P~,Tgv

- .
+ P B ppr EoDAT TBCy RpoPE — %EFED oTBOT v Rpepr

2i 2
- EZUFBE ETAP~, T gl — =(V EB —iETPIE) UFAP’)/*FBU] Py. (C.3)
Finally the terms proportional to ) in the Lax curvature become

(dL — LL)g =

1

ao— | (B4 + il AV0) QVI, AT E + EAQVTy T 4T 11V

=

— «(EA + vl AV0) QVIy T AE — «E4 QVT, T 4 Vo

~ L EAEB QU D 4Py, Tl — % « BAEB QUi T 4P~ o

N

2
-5 EB ETAP~, T v QVinTav + = EBuI 4P T o QVinT4E
2 2
-5 EB oI EQVy, T 4Py v + EEB ETAP~, Tl 110 QV iy T 4v
2 2
+ EEB oI 4T Py, T QVI T4 E + EEB oM EQVN, T AP~ [ gliqv

1 1
- EEB oA P T E QV i, qv — EEB VAP TE QV i, T AT v

1 1
- EEB vl AE QVi~, T gy PTAT 10 — EEB oI E QV i, Ty Pl av

R
+ 5 (<BC vl ePPv — B ol P L) Rpp” QVTFABE]

2
+ 0375 (« B M E (2QV2L 4Pyl sl 110 — QVAuT 57 PTT110)
+ «EB oI 1 E (2QV AT AP sv — QVI gy, PL 4v)
— EB oI E 2QV~, T APy, gv — QVA, Iy PTA0)
— EP O AT 1 E 2QV AT 4P T 110 — QVA I gy PT AT 10)
— — (xE¢ T PPy — EC ol oPET10) RppP QVIT 4511 E
2

R
— E(*EC UFCDEFHU — EC UPCDEU) RDEAB QVFABE>

: A 2
- QQ% (v « B4 —iBLATL E = 2EM T Vo — = EP ol AT Pyl pE

2 2
+ = EP ET*Py.lpl v — — + B” EPAPV*FBU) OVl av, (C.4)
where we’ve used the fact that
2TAT 11 E)o(TAE) 3 +2(TAE) o (T4T 11 E) g4+ (TT 11 )ap ETAE + (I') 05 ETAT 11 E = 0 (C.5)
and

vl AVY QVI T AT E + oI AT 11 Vo QVIy, T 4E + ETAT 11 Vo QV T4, T 4v
+ ETAVo QVT, DAl 10 + 0T AT E QV 17, T4 Vo + 0T E QVIA TAT 1V =0 (C.6)
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which follow from the basic Fierz identity (D.11)).

D Gamma-matrix identities

Some useful gamma-matrix identities are (a =0, 1,2, 3)

Fabc _ —iEadeFd’y5 (Dl)
Fab — —%eadeI‘cdv5 (D2)
re — %EadeFbcd'Y5 (D3)
and some useful identities involving the projection operators are
PSPa’b’c’p24 — _3iJ[a’b’P8FC’],Y77)24 (D.4)
PV Py = VAT (D.5)
I“Psly = 2Py (D.6)
! / 1 IAN) ) IAN)
F[a Pgrb} = 5732411@ b 7324 + %Ja b 777324 (D?)
Poa(0) +iJu”7)TyPos = 0 (D.8)
738(52// — iJa/b/’y7)Fb/P24 = 0. (D.9)
D.1 Fierz identities
The basic Fierz identity for the D = 11 gamma-matrices we use says that
Tlas(Tig)ye) =0, (D.10)
where A = 0,...,10. In D = 10 notation this becomes the identities
I 3(Tal11),s =0 (D.11)
and
F?ag(PAB)'\/(S) + F%;B(FHFB)’WS) = 0 . (Dl?)
We can also expand fermion bilinears in a Fierz basis as follows:
1 1 1
@a @ﬁ — ﬁcaﬁ @@ - m(FABFll)aﬁ @FABF11® - mfiéc @FABC@
1 1
+ 35 3 (T apcT11)*? M4BT 0 + mr‘j@w er4E¢Pg  (D.13)

It will be useful to project this identity in various ways using our projection operators. In
the AdS,; x CP? case when v = Pgv we get

v = (PO w+ (PP 0 — L (L P T
4 %(Fa’ﬁps)aﬁ ol — 11_6(Fab777)8)a6 oI~y
a 321- 3! (PsCaryrePa) vl 0 + ﬁ(PSPa/b'c/PnPS)aﬁ 1 S UTLY
+ 321. 5 (PsLalyea Ps)*? wl Ty (D.14)
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and it follows from this expression that

, 1 1 1
(T4 )~ (I’a/v)ﬁ = _1(73240)046 VU — 1(757324)0‘[3 v75v — Z(I‘aw57324)a6 UF“75U
1 1
- Z(Fa777324)aﬁ vl — g(I‘ab777324)°‘ﬁ vl 7y, (D.15)

Similarly we have in the AdSy x S? x T case when v = Poyv that

1 1 1
_Z(PSC)aﬁ VU — 1(77875)a6 vYsv — Z(PSPQ’YEJ)QB vlaysv

1 1
— Z(nggw)aﬁ vlgyrv — g(PgI’@w)O‘B UF@77U

(P 0)* (Dgv)? =

1 / 1 /
- Z(nggb/%)aﬁ ol 0 — g(PgF@c/)aB oy (D.16)
These identities were used in many places in the calculation of the curvature of the Lax
connection.

E Check of the closure of H in AdS, x S? x T©

The NSNS three-form superfield strength in the AdSy x S? x T background is given by

1
H = —if2ETAT11E +iEBEAET AT\ + 5f:CngA Hapo
= —icPEAET AT E — 2ic*EA ET ATy Dv — ic* EA Dol 4Ty, Do

- 4
+ %EA (vrBymv ElapvsE — vI'B~,T11v ET AgE + vI'4B~,0 ET g1 E

/ 1 / 204 A~ N
— T T0 Eq D ATy E + §UP@d v Erm*rAr@d/E) + FEBEA ET 45T117v
2ct b
+ fEBEA Dol 45T 1170 + yECEBEA Hapc + O, (E.1)

where £4 and Hapc are given is (37) and (BI0) respectively, and B4 = E4 + 210l 4E. We
wish to demonstrate that this form is indeed closed.
After a bit of algebra using the torsion equation (2.I) and Fierz identities one finds

% - % . % .
—dH = EZEB ETAE ET ApT11mv + EZEB ETARE ETAT 170 — EZEB BTy E ET g0

Lo 8i , 2i
n EZE” oI E ET iy T117 Vo + EZEB ETY Dv ETy pT117s0 — EfE@ ET,I'11 E Duy,v

2 .
+ EZEQUPQDU ET D173y E —iEP (Qap — Qap) ETAT 11 E — 2iE4 Dul' 4T,V Do
. 4

— QZEB (QAB — QOAB) EFAPHDU — EECEB (QAB — QOAB) EPAcrn"y*U

4
R?
+ T 4B~ v ETgT 1 E — oI Ty 0 B~ T ATy E L orbed BT T ATy

¥« EL'gl'11 v 11V £yl alper +2U v L 117% D Al pedr

+ —EYECuoIY E ET gy D10 + %EA v (w%wv ETupvsE — vI'P~, 110 ETogE

2 c?
+d (EEBEA Dol AT, + EECEBEA HABC> . (E.2)
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The terms in the first line vanish due to the Fierz identity (D.12]). Using the expressions for
QA8 and Hape given in (3.8) and (3I0) and simplifying further this becomes

1 ,
- ﬁEC EY ETAE vy, TyTgT11(1 — P)Tovy,o + ...
2 2
+ ﬁEb E¢ ET 7, Tyv ET 7, Dy T gv + ﬁEb E¢EL 117, Dov By Ty yv
4 / / 8 /
— ﬁEb E¢ET% v ETy D11 T v — ﬁEB E€ET 4y v ET gl L yv
2 ] 2 1,
— ﬁEb ESETAE ol Tiv — ﬁEb E¢ Ey7E ol gyys0 — ﬁEb ESETT 1 E vl v
2 2
— ﬁEBEQ ETT ) E vy T eapyav + ﬁEBEE ET2E vy, Lol 11750
1 2% 2i
— ﬁEb EC ET%E ol g Tyv + EZEG ETYE ol v, D11 Vo + EfE@ ET g F vy, T, Vo
+ 2 B B e B o To Vo + LY 0T B BTy Ty Vo + oo BB ETY Vo Ty T
R ab Vs L vy L =yr Vo + i) v ab L1175 VU + i) vl g Bl117x
A Y Ty B ETYT 1 Vo — LB ETYE 07, LoDy, Vo — LB LA B o, TV
R Yxl o'ty 11 VU R VY% a’bl 11 (% R 118 U7Y% a’b (%
P P 2i
- éEa ETEE ol gy 01 Vo + %Ea ETLT ) E ol gy, Vo — EZEQ ETE vy,Ty[oT'11 Vo

21 21 21
- EZEQ ETT11 B vy, TTy Vo + EZEA ET1 E vy TV — EfEA EviEvyysT aVo
41
+ EZE“ EviEvy,ysTy Vo, (E.3)
where the ellipsis in the first line denote three terms which, together with the previous term,
cancel due to the Fierz identitity (D.I1)). Using the Fierz identity in (D.I6]) the terms with

two bosonic vielbeins can be seen to cancel and we are left with

2 2i i
EZE“ ET"E vl gy, I'11 Vo + EZEQ ET 3 E vy, T2 Vo + EZEg ET 375 E vy, T2y, Vo

+ %E”' vl E ET gy T117, Vo + %EB ET"Vv ETypT117.v + %Eb, viLay E ETTn Vo
~ 2B BPEB 0, DT Vo — 5 B BTy By, Ty Vo — B BTEE oy, Ty Vo

+ %Ea’ ETT 1 E vl gy, Vo — %EQ ET*E vy, Iyl Vo — %EQ ET*T1 E vy Iypla Vo

+ %EA ET11 E vy, TaVo — %EA ErrE vyl aVo + %Ea/ EviEvyysla V. (E4)
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‘We now use the fact that
2t ., b 2l . b
EE_ ET o E vy I"T'11 Vo + EE— ET gpys B vy =y Vo

9 2i
_ EZE@ ET,TpE vy BT Vo + ... + EZE@ EysC L E vy, DB 175V + ..

4 ) / 4 ) /
+ EZEQ vy, YT E Vol T E — EZEQ vy, [T, EVoly E
9i 2i
— EZEQ ET E vy, Ty Vo — EfE@ EryrEvy,Tays Vo
4Z a b/ 47/ a b/
= BRIV T,E Vol Dy E — £ B0yl T, E Vol B
2i 2i
- EZEQ ET E vy, Ty Vo — EfE@ By Evy TV, (E.5)

where the first ellipsis denote the 5 terms which together with the previous term cancel due

to the Fierz identity (D.II) and similarly for the second ellipsis. This leaves us with the
following terms in dH

2i ;.

- EZEB ETAEVOT AT 1Ty + ... — }%Eb ETAE VO AT 11 Ty + . ..
) / 2. /

- éEb ETAEVuy, TyTal v + ... + éEb By, TyTAE Vol 4T 0 + . ..

4‘ / ! 4 / !
+ 2 BY BryTyyo VoI T E + EZE’) Ev, Ty D10 VOIY E

R
2Z a/ bé 27/ b/ 27/ b/
+ EE ETE ol gpev:'11VU — EE E~v (1 EVul'yo — EE E~vE Vul'yysv
20 20
+ EZE” ET1 E vy Ty Vo + EZE’) EviE vy Dyvs Vo . (E.6)

Again the ellipsis denotes terms which cancel together with the previous term due to (D.ITJ).
Using the relation

%
2B EP%E T eyl Vo

R
= —ﬁEb E~, T E Vol yyv — ﬁEb BTl 11 E VT gy 50
_ " BY g rerAT E Vol 4T v + _ U BY B DTAT E VoL 4T gvs0 +
= R Y 11 Al b T 3R Vx5 11 Al ey Y5
44 44

— EE*’/ Ev T yyv VoI TH E — EE*’/ E~,Tyy D10 VT E

26y 29 _y
+ EEb Ev: EVUlyyeysv + EEb ET 11 EVoul'yy,v

% ., %
n éEb BEvE Volyysv + éEb E~, D11 EVolyo

4. / ! 4 / !
- —EfEb Ev,Tyyv Vol T E — EfEb Ev, Ty 1o Vol E

2 2
+ EE” EviEVulyy,s0 + EEb ET11 E Vulyy,v

% ., % .,
n EZEI’ EvE Volyysv + EZEI’ Ev, 1 EVolyv, (E.7)
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we see that also the last remaining seven terms in dH cancel. This completes the proof that
the NS-NS three-form we have constructed for AdSy x S% x T is indeed closed.
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