1,345 research outputs found

    A scanning drift tube apparatus for spatio-temporal mapping of electron swarms

    Get PDF
    A "scanning" drift tube apparatus, capable of mapping of the spatio-temporal evolution of electron swarms, developing between two plane electrodes under the effect of a homogeneous electric field, is presented. The electron swarms are initiated by photoelectron pulses and the temporal distributions of the electron flux are recorded while the electrode gap length (at a fixed electric field strength) is varied. Operation of the system is tested and verified with argon gas, the measured data are used for the evaluation of the electron bulk drift velocity. The experimental results for the space-time maps of the electron swarms - presented here for the first time - also allow clear observation of deviations from hydrodynamic transport. The swarm maps are also reproduced by particle simulations

    The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh

    Get PDF
    Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])–deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR–signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively

    The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection.

    Get PDF
    During positive selection at the transition from CD4+CD8+ double-positive (DP) to single positive (SP) thymocyte, TCR signalling results in appropriate MHC-restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection. Foxa1 and Foxa2 had overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+T-cells. Foxa1 and Foxa2 regulated expression of many genes encoding splicing-factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons (DEU). Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing-factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple DEU. Thus Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and that by also regulating splicing of splicing-factors, they exert widespread control of alternative splicing

    In the fetal thymus, Gli3 in thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh

    Get PDF
    Gli3 is a Hedgehog (Hh) responsive transcription factor that can function as a transcriptional repressor or activator. We show that Gli3 activity in thymic epithelial cells (TEC) promotes positive selection and differentiation from CD4+CD8+ to CD4+CD8- single positive (SP4) cell in the fetal thymus and that Gli3 represses Shh Constitutive deletion of Gli3, and conditional deletion of Gli3 from TEC, reduced differentiation to SP4, whereas conditional deletion of Gli3 from thymocytes did not. Conditional deletion of Shh from TEC increased differentiation to SP4, and expression of Shh was upregulated in the Gli3-deficient thymus. Use of a transgenic Hh-reporter showed that the Hh pathway was active in thymocytes, and increased in the Gli3-deficient fetal thymus. Neutralisation of endogenous Hh proteins in the Gli3-/- thymus restored SP4 differentiation, indicating that Gli3 in TEC promotes SP4 differentiation by repression of Shh Transcriptome analysis showed that Hh-mediated transcription was increased but TCR-mediated transcription decreased in Gli3-/- thymocytes compared to WT

    A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes

    Get PDF
    Mitochondrial CyP-D (cyclophilin-D) catalyses formation of the PT (permeability transition) pore, a key lesion in the pathogenesis of I/R (ischaemia/reperfusion) injury. There is evidence [Malouitre, Dube, Selwood and Crompton (2010) Biochem. J. 425, 137–148] that cytoprotection by the CyP inhibitor CsA (cyclosporin A) is improved by selective targeting to mitochondria. To investigate this further, we have developed an improved mtCsA (mitochondrial-targeted CsA) by modifying the spacer linking the CsA to the TPP+ (triphenylphosphonium) (mitochondrial-targeting) cation. The new mtCsA exhibits an 18-fold increase in binding affinity for CyP-D over the prototype and a 12-fold increase in potency of inhibition of the PT in isolated mitochondria, owing to a marked decrease in non-specific binding. The cytoprotective capacity was assessed in isolated rat cardiomyocytes subjected to transient glucose and oxygen deprivation (pseudo-I/R). The new mtCsA was maximally effective at lower concentrations than CsA (3–15 nM compared with 50–100 nM) and yielded improved cytoprotection for up to 3 h following the pseudo-ischaemic insult (near complete compared with 40%). These data indicate the potential value of selective CyP-D inhibition in cytoprotection

    The transcriptional repressor Bcl6 promotes pre-TCR induced differentiation to CD4+CD8+ thymocyte and attenuates Notch1 activation

    Get PDF
    Pre-TCR signal transduction is required for developing thymocytes to differentiate from CD4-CD8- double negative (DN) to CD4+CD8+ double positive (DP) cell. Notch signalling is required for T-cell fate specification and must be maintained throughout β-selection, but inappropriate Notch activation in DN4 and DP cells is oncogenic. Here, we show that pre-TCR signalling leads to increased expression of the transcriptional repressor Bcl6 and that Bcl6 is required for differentiation to DP. Conditional deletion of Bcl6 from thymocytes reduced pre-TCR-induced differentiation to DP cell, disrupted expansion and enrichment of icTCRβ+ cells within the DN population and increased DN4 cell death. It also increased Notch1 activation and Notch-mediated transcription in the DP population. Thus, Bcl6 is required in thymocyte development for efficient differentiation from DN3 to DP cell and to attenuate Notch1 activation in DP cells. Given the importance of inappropriate NOTCH1 signalling in T-ALL, and the involvement of Bcl6 in other types of leukaemia, this study is important to our understanding of T-ALL

    On the possibility to supercool molecular hydrogen down to superfluid transition

    Full text link
    Recent calculations by Vorobev and Malyshenko (JETP Letters, 71, 39, 2000) show that molecular hydrogen may stay liquid and superfluid in strong electric fields of the order of 4×107V/cm4\times 10^7 V/cm. I demonstrate that strong local electric fields of similar magnitude exist beneath a two-dimensional layer of electrons localized in the image potential above the surface of solid hydrogen. Even stronger local fields exist around charged particles (ions or electrons) if surface or bulk of a solid hydrogen crystal is statically charged. Measurements of the frequency shift of the 121 \to 2 photoresonance transition in the spectrum of two-dimensional layer of electrons above positively or negatively charged solid hydrogen surface performed in the temperature range 7 - 13.8 K support the prediction of electric field induced surface melting. The range of surface charge density necessary to stabilize the liquid phase of molecular hydrogen at the temperature of superfluid transition is estimated.Comment: 5 pages, 2 figure

    Work restructuring and changing craft identity: the Tale of the Disaffected Weavers (or what happens when the rug is pulled from under your feet)

    Get PDF
    This article explores the changes in worker identity that can occur during manufacturing restructuring – specifically those linked to the declining status of craft work – through an in-depth case study of Weaveco, a UK carpet manufacturer. An analysis of changes in the labour process is followed by employee reactions centred on the demise of the traditional craft identity of male carpet weavers. The voices of the weavers dramatize the tensions involved in reconstructing their masculine identity, and we consider the implications this has for understanding gendered work relations

    Real and imaginary chemical potential in 2-color QCD

    Full text link
    In this paper we study the finite temperature SU(2) gauge theory with staggered fermions for non-zero imaginary and real chemical potential. The method of analytical continuation of Monte Carlo results from imaginary to real chemical potential is tested by comparison with simulations performed {\em directly} for real chemical potential. We discuss the applicability of the method in the different regions of the phase diagram in the temperature -- imaginary chemical potential plane.Comment: 15 pages, 7 figures; a few comments added; version published on Phys. Rev.

    Ca2+ uptake to purified secretory vesicles from bovine neurohypophyses

    Get PDF
    Purified secretory vesicles isolated from bovine neurohypophyses were found to take up Ca2+ when incubated at 30°C in media containing 10−7 to 10−4 M free Ca2+. At 10−4 free Ca2+ 19 nmol/mg protein were taken up within 30 min. The initial uptake at this Ca2+ concentration was about 2 nmol/mg protein per min. The uptake of Ca2+ to secretory vesicles was not affected by ATP, oligomycin, ruthenium red, trifluoperazine, Mg2+ or K+, but was inhibited by Na+ and Sr2+. From these characteristics it can be concluded that the uptake system does not utilize directly ATP (as the Ca2+-ATPases known to be present in the cell membrane and the endoplasmic reticulum) and is different from the mitochondrial Ca2+ uptake system driven by respiration and/or ATP hydrolysis. However, Ca2+-Na+ exchange may well operate: In experiments using different concentrations of Na+ we found half-maximal inhibition of Ca2+ uptake with 33.3 mM Na+. An analysis of the data in a Hill plot indicated that at least 2 Na+ would be exchanged for 1 Ca2+. Also, it was found that Ca2+ previously taken up could be released again by external Na+ but not by K+
    corecore