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Abstract 

During positive selection at the transition from CD4+CD8+ double-positive (DP) to single 

positive (SP) thymocyte, TCR signalling results in appropriate MHC-restriction and signals for 

survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 

are required to regulate RNA splicing during positive selection. Foxa1 and Foxa2 had 

overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP 

thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral 

naïve CD4+T-cells. Foxa1 and Foxa2 regulated expression of many genes encoding splicing-

factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prf40b and 

Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was 

dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially 

used exons (DEU). Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, 

Stat5a, Stat5b, Cd28, Tcf7) and splicing-factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, 

Prpf8) showed multiple DEU.  Thus Foxa1 and Foxa2 are required during positive selection 
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to regulate alternative splicing of genes essential for T-cell development, and that by also 

regulating splicing of splicing-factors, they exert widespread control of alternative splicing.  

 

 
Introduction 

The production of T-cells in the thymus involves multiple stages of development during 

which haematopoietic precursors give rise to mature T-cells that can differentiate into 

functional effector T-cells. During this process, progenitors cells which do not express the 

coreceptor molecules CD4 and CD8  (CD4−CD8− double negative (DN) cells) differentiate to 

become CD4+CD8+ double positive (DP) cells, which give rise to both CD4 single positive (SP) 

and CD8SP populations. Maturation from DP to SP follows successful rearrangement of the 

Tcr locus, and requires TCR signalling: positive selection results in appropriate MHC 

restriction of SP cells, and is followed by negative selection of potentially self-reactive clones 

and selection of regulatory T-cells (Treg)(1-3).  The strength and duration of the TCR signal 

that a developing cell receives broadly determine its fate, with the strongest signals leading 

to negative selection or CD4 Treg differentiation, usually at the SP stage in the medulla, 

intermediate signals leading to positive selection usually in the cortex, and weaker signals or 

lack of TCR signalling leading to death by neglect(4). For DP thymocytes undergoing positive 

selection, TCR signal strength and duration also influence CD4 and CD8 lineage choice.  

Those cells receiving stronger and longer TCR signals tend towards the CD4SP fate, while 

weaker/more transient signals favour CD8SP fate, and fate decisions are also influenced by 

the relative timing of cytokine and TCR signalling that a developing cell receives (2, 5, 6).  

Many models have been proposed to describe this process and to explain how positive 

selection ensures that CD4SP and CD8SP populations express TCR appropriately restricted 

by MHCII and MHCI, respectively(2, 3, 7). Currently, the consensus favours the kinetic 

signalling model(2, 4, 8), in which CD8 is downregulated first during positive selection, 

leading to a CD4+CD8lo intermediate, with continued CD4 co-receptor expression allowing 

for prolonged stronger MHCII-TCR signalling, leading to differentiation to CD4SP; whereas 

cytokine signalling through the common gamma chain activates Stat5a and Stat5b, and 

rescues cells that have received an interrupted MHCI-TCR signal to induce differentiation to 
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CD8SP(9, 10). The CD4/CD8 lineage decision is also influenced by factors from the stroma, 

such as Notch and Hedgehog (Hh) signalling(11-14).  

Many transcription factors contribute to the regulation of the CD4/CD8 lineage decision (2, 

7, 15, 16). Additionally, epigenetic processes, such as DNA methylation and histone 

modifications, may be involved in locking-in the pattern of gene expression to generate 

stable CD4SP and CD8SP lineages(17), and potentially also in preparing for initiation of a 

particular programme of differentiation.   

Here we investigate the role of the transcription factors Foxa1 and Foxa2 in T-cell 

development. The Foxa proteins are a highly conserved subfamily of forkhead box 

transcription factors, which contain unique wing-helix DNA-binding domains(18). The Foxa 

proteins can function as pioneer transcription factors, which by binding silent (condensed) 

chromatin early in a developmental programme prior to target gene activation, can act 

either to open up local chromatin, imparting competence to other transcriptional activators 

to initiate a developmental lineage, or to directly facilitate other factors binding to 

nucleosomal DNA(19, 20).  Foxa2 has recently also been shown to demethylate tissue-

specific regions of DNA, to generate stable lineage-specific DNA methylation patterns to 

enhance gene expression(21). 

Foxa1 and Foxa2 proteins are closely related to each other and are widely co-expressed 

during embryogenesis and in several tissues postnatally including lung, liver, intestines, 

pancreas and thymus (12, 22-26). Genetic ablation of Foxa1 or Foxa2 in mice showed that 

they are both required for normal development during embryogenesis. Foxa2-deficient 

embryos display severe defects in notochord, floorplate and endoderm and die at E10-11, 

whereas Foxa1-null mice exhibit defects in the regulation of glucose homeostasis and die 

postnatally(27, 28). Foxa1 and Foxa2 play over-lapping and compensatory roles in the 

regulation of development of lung, liver and pancreas(22, 29-32).   

Foxa2 is a well-recognized target gene of the Shh signalling pathway in the floorplate, and is 

required for the maintenance of Shh expression, but can also negatively regulate expression 

of components of the Shh signalling pathway(33-35).  Expression of Foxa1 is also correlated 

to Hh signalling activities, and Foxa1-deficient mice exhibited elevated Shh and Gli2 

expression in prostate, suggesting that Foxa1 can negatively regulate Shh signalling(36).  
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Little is known about the function of Foxa1 and Foxa2 in the immune system.  In mouse 

models of autoimmune inflammation, ectopic Foxa1 expression has been shown to drive 

differentiation and suppressive function of a novel subset of Treg(37). We  recently found 

that expression of Foxa1 and Foxa2 in thymic epithelial cells (TEC) is required to maintain 

normal T-cell development and homeostasis of thymic and spleen Treg populations. 

Conditional deletion of Foxa1 and Foxa2 from TEC increased the proportion of medullary 

TEC, but reduced cell-surface MHCII expression on TEC, leading to a smaller thymus with a 

reduction in conventional CD4 T-cell differentiation but an increase in the CD4 Treg 

population(25).  In the thymus, Foxa1 and Foxa2 are also expressed in developing T-cells, 

and Foxa2 is a transcriptional target of Shh signalling after pre-TCR signal transduction(12, 

26). 

Here we investigate the function of Foxa1 and Foxa2 in developing T-cells.  We show that 

Foxa1 and Foxa2 are required at the transition from DP to SP T-cell, where they regulate 

RNA splicing. Conditional deletion of both Foxa1 and Foxa2 led to a reduction in positive 

selection, differentiation and maturation of the SP populations, and a reduction in the 

peripheral CD4 T-cell pool.  

 

 

Results 

CD4SP and CD8SP development are impaired in the Foxa1/2cKO thymus 

We examined Foxa1 and Foxa2 expression by QRT-PCR in FACS-sorted developing 

thymocytes from the DN3 stage onwards (Fig 1A).  Foxa1 and Foxa2 were detected in all 

stages, and showed reciprocal patterns of expression, with Foxa1 expression upregulated in 

DN4, following by decline in  DP cells.  In contrast, Foxa2 was highly expressed in DN3 and 

DP stages, and expressed at lower levels in DN4 cells. Both Foxa1 and Foxa2 showed higher 

expression in CD4SP than in CD8SP cells.  

To establish if Foxa1 and Foxa2 play a T-cell intrinsic role in thymocyte development, we 

conditionally deleted Foxa1 and/or Foxa2 from T-cells from the DP stage of development 

onwards, by crossing mice carrying a single or double loxP-flanked Foxa1 and/or Foxa2 allele 

to mice in which Cre is driven by the CD4-promotor. Foxa1fl/flCD4cre+ and Foxa2fl/flCD4cre+ 
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mutant mice are referred to as Foxa1cKO and Foxa2cKO, respectively. 

Foxa1fl/flFoxa2fl/flCD4cre+ double mutant mice are referred to as Foxa1/2cKO. Foxa1 and 

Foxa2 were effectively deleted in Foxa1/2cKO CD4SP and CD8SP thymocytes, as expression 

of Foxa1 and Foxa2 were below detection by QRT-PCR, but detected in the control 

(Foxa1fl/flFoxa2fl/flCD4cre-) CD4SP and CD8SP populations (Fig 1B).  

We compared thymocyte populations in Foxa1cKO, Foxa2cKO and Foxa1/2cKO thymus with 

their control littermates. The number of thymocytes were not significantly different 

between the conditional Foxa1 and/or Foxa2 mutants and their controls (Fig 1C). The 

Foxa1cKO thymus contained normal proportions of DP and SP populations (Fig 1D), but 

there was an increase in the proportion of DP cells in the Foxa2cKO compared to control (Fig 

1E,G).  In the Foxa1/2cKO thymus, the proportion and number of the DP population were 

increased and the proportion and number of CD4SP and CD8SP populations were reduced 

(Fig 1F-I). The fact that while the phenotype of the double Foxa1/2cKO thymus was more 

pronounced than that of the Foxa2cKO, the Foxa1cKO thymus appeared grossly normal, 

suggests that Foxa1 can compensate for Foxa2 at this developmental transition, and we 

therefore decided to use the double Foxa1/2cKO mice to investigate the impairment of 

differentiation from DP to SP cell.  

The ratios of DP:SP, DP:CD4SP and DP:CD8SP were all increased in Foxa1/2cKO compared to 

control, while the ratio of CD4SP:CD8SP was decreased (Fig 1J). Thus, deficiency of both 

Foxa1 and Foxa2 in thymocytes led to less efficient development of SP populations and bias 

towards the generation of CD8 lineage cells over CD4SP. During differentiation from DP to 

SP stage, cell surface TCR expression is upregulated. The proportion of TCRhi thymocytes 

was decreased in the absence of Foxa1 and Foxa2 (Fig 1K). When we gated on TCRhi cells, 

and compared subset distribution, we found an increase in the proportion of DP and 

CD4+CD8lo intermediate cells, and a decrease in the proportion of CD4SP population, 

indicating that fewer cells were completing positive selection and a partial arrest at the 

transition from DP and CD4+CD8lo to CD4SP (Fig 1L).    
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Foxa1/2 deficiency influences maturation of SP cells and peripheral T-cell populations 

We then investigated the maturation status of SP cells in the Foxa1/2cKO thymus by 

expression of HSA, CD69, Qa2 and CD62L.  After positive selection, SP thymocytes retain 

high expression of heat-stable antigen (HSA (CD24)) and CD69, and as they mature HSA and 

CD69 are downregulated, Qa2 is upregulated, and expression of CD62L indicates that 

thymocytes are mature and ready to egress from the thymus. The proportion of HSA+CD69+ 

cells in both CD4SP and CD8SP populations was significantly decreased in Foxa1/2cKO 

compared to control thymus (Fig 2A). Furthermore, there was a significant decrease in the 

percentage of Qa2+ and CD69-CD62L+ cells in the CD4SP compartment in Foxa1/2cKO 

compared to control (Fig 2B-C), whereas we did not detect significant differences in Qa2 and 

CD62L expression in the CD8SP population (Supplementary Fig 2).  Thus, in the absence of 

Foxa1 and Foxa2, not only were there fewer CD4SP and CD8SP cells, but their maturation 

was also affected, such that fewer mature CD62L+CD4SP were produced to egress from the 

thymus. In contrast, we found no significant difference in the proportion of 

CD4+CD25+Foxp3+ Tregs, NKT cells or NK cells in the Foxa1/2cKO thymus compared to 

control (Fig 2D,E).  

In the spleen and lymph nodes changes in the CD4+ T-cell populations mirrored the thymus 

in the Foxa1/2cKO compared to control, with reductions in the proportion and number of 

conventional CD4+ T-cells overall and of naive CD44-CD62L+CD4+ T-cells in spleen (Fig 2F-H).  

In contrast, we did not detect significant differences in the number of peripheral CD8+ T-

cells in the Foxa1/2cKO compared to control, suggesting that despite the reduction in CD8SP 

cells in the thymus, the peripheral CD8+ T-cell compartment is subject to homeostatic 

control and can expand to reach its normal size (Fig. 2F-G). 

 

Foxa1/2 deficiency reduces TCR signalling 

TCR signal strength is one factor which determines positive selection in the thymus and 

tonic TCR signalling is again required for maintenance and homeostasis of peripheral T-cell 

populations after egress from the thymus. Therefore, as a proxy to measure TCR signal 

strength in thymocyte subsets, we compared expression of proteins whose levels of 

expression are directy determined by TCR signalling between Foxa1/2cKO and control.  
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Expression of intracellular Nr4a1 is induced as an early consequence of TCR signal 

transduction and high expression requires relatively strong TCR signalling(38, 39). The 

proportion of intracellular Nr4a1hi cells was significantly reduced in Foxa1/2cKO DP, CD4SP 

and CD8SP populations compared to control, suggesting that in the absence of Foxa1 and 

Foxa2 fewer cells had reached the threshold of TCR signal strength required to induce high 

levels of Nr4a1 (Fig 3A). Levels of cell-surface CD5 expression correlate with the strength of 

TCR signal transduction that a developing T-cell has received(40). As expected, mean 

fluorescence intensity (MFI) of anti-CD5 staining was lower in CD8SP and DP cells than in 

CD4SP cells (Fig 3B). MFI of CD5 was lower in Foxa1/2cKO DP, CD4SP and CD8SP populations 

than in their control counterparts, consistent with reduced TCR signal strength in the 

absence of Foxa1 and Foxa2.   

 

Foxa1 and Foxa2 promote positive selection in DP thymocytes  

Positive selection signals for survival and further maturation and requires interactions 

between self-peptide:MHC complexes in the thymic cortex, which may take place over a 

number of days, involving multiple or prolonged TCR-MHC interactions(41-43).  TCR 

signalling for positive selection leads to cell-surface CD69 expression followed by 

upregulation of the cell-surface TCR complex. The proportions of DP cells that expressed cell 

surface TCRhi and CD69 were decreased in the Foxa1/2cKO thymus compared to control 

(Fig 3C-D), consistent with a reduction in positive selection. To test this and to investigate 

mechanisms that might account for the reduced transition from DP to SP, we carried out 

transcriptome analysis on cells undergoing positive selection by RNA-sequencing FACS-

sorted CD69+DP cells. RNA-sequencing identified only 176 differentially expressed genes 

(DEG) between Foxa1/2cKO and control datasets (adjusted (FDR) p<0.05), of which 109 

(62%) were more highly expressed in Foxa1/2cKO than control (Fig 3E and Table S1). Of the 

176 DEG,  85 (~48%) had previously been identified as Foxa1/2 targets in genome-wide 

ChipSeq analysis of Foxa1/2 binding sites in dopaminergic neuronal progenitors and 56 of 

those genes with verified Foxa1/2 binding sites (approximately two thirds) showed higher 

expression in the Foxa1/2cKO than control (Fig 3F and Table S1)(34, 44). DEG included genes 

involved in T-cell development and function, and approximately one quarter of DEG were 
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genes whose transcription has been shown to be regulated during positive selection(45) (Fig 

3G and Table S1). Among these, DEG that were more highly expressed in Foxa1/2cKO than 

control datasets included genes known to reduce TCR signal strength: Cbl, a ubiquitin ligase, 

which negatively regulates TCR signalling(46) and Themis, which can attenuate TCR 

signalling during repertoire selection(47); and also genes associated with the CD8 lineage: 

Cd8b1; and Lyst, a lysosomal trafficking regulator required for CTL lytic granules(48), 

consistent with the CD4 lineage being more severely affected in the conditional knockouts.  

To test in an unbiased way, if Foxa1 and Foxa2 are required for the transcriptional response 

to TCR signalling for positive selection, we then used canonical correspondence analysis 

(CCA) to compare the overall pattern of gene expression in our datasets with transcriptome 

data from publically available datasets prepared from DP thymocytes that were receiving 

different strengths of TCR signals during selection (GSE38909)(49). The GSE38909 dataset 

contains TCR-transgenic AND DP thymocytes stimulated with a positively selecting peptide 

(gp250) or a non-selecting control peptide(49). We selected the 2000 most significantly 

differentially expressed genes from the GSE38909 dataset between DP thymocytes 

stimulated with the non-selecting control peptide and DP thymocytes stimulated with the 

positively selecting peptide and used these to generate a scale of unstimulated to TCR-

signalling-for-positive-selection.  We plotted our datasets against this scale. The CCA 

segregated the datasets by genotype:  both control datasets were on the positive side of the 

axis, which corresponded to the transcriptional pattern induced by the positively selecting 

peptide, consistent with the fact that CD69+DP thymocytes have initiated positive selection 

by TCR signal transduction (Fig 3H).  In contrast, both Foxa1/2cKO datasets fell on the 

negative side of the axis, thus showing an overall pattern of transcription that is closer to 

that of unstimulated DP cells than that of their control counterparts.    

To confirm this impact on positive selection, we subdivided thymocytes by cell surface TCR 

and CD69 expression into four different stages: TCRlo/negCD69- (pre-selection thymocytes), 

TCRintCD69+ (intermediate transition, undergoing positive selection), TCRhiCD69+ 

(thymocytes after TCR signalling for initiation of positive selection) and TCRhiCD69- (more 

mature population). The proportion of pre-selection thymocytes was higher in the 

Foxa1/2cKO than control thymus, whereas there was no significant difference in the 
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proportion of the TCRintCD69+ population, and both TCRhiCD69+ and TCRhiCD69- 

populations were reduced, indicating that Foxa1 and Foxa2 expression in thymocytes 

promotes initation of the process of positive selection, and also progression of cells during 

the differentiation process (Fig 3I). The loss of cells from the TCRhiCD69+ population, but 

not its precursor TCRintCD69+ population, suggests impairment at a late stage of positive 

selection and a failure to progress, and consistent with this, the proportion of cells 

undergoing cell death (Annexin V+) was increased in the CD69+DP population in the 

Foxa1/2cKO thymus compared to control (Fig 3J). When we gated on the most mature 

TCRhiCD69- thymocyte population, and compared CD4/CD8 subset distribution, we found 

that the proportion of DP cells increased by more than two-fold in the Foxa1/2cKO thymus 

compared to control, whereas the proportion of CD4SP cells was significantly reduced (Fig 

3K), demonstrating a clear requirement for Foxa1 and Foxa2 in normal differentiation to 

CD4SP and positive selection, and suggesting that differentiation is dysregulated in the 

Foxa1/2cKO, so that more cells that had upregulated cell surface TCR and downregulated 

CD69 were unable to progress beyond the DP stage.     

 

Foxa1 and Foxa2 regulate exon usage 

To investigate how Foxa1/2 might regulate positive selection we identified genes that 

encode verified transcription factors amongst the DEG between Foxa1/2cKO and control 

CD69+DP datasets to look for known regulators of positive selection or differentiation at this 

developmental stage which might function downstream of Foxa1/2. Twenty-four 

transcription factors were found, of which 13 had previously been verified as Foxa1/2 

targets in genome-wide ChipSeq analysis in neuronal progenitors (Fig 4A and Table S1). 

Amongst the transcription factors whose expression were downregulated by Foxa1/2 

deletion there were no obvious down-stream candidates that might function to promote 

positive selection, although several showed changes in expression consistent with the 

developmental phenotype: for example Ptma, an anti-apoptotic gene (50); and Notch3 

which is transcriptionally regulated during positive selection but not required for positive 

selection(45, 51). Likewise, we found no obvious candidate genes which might function to 

inhibit positive selction or TCR signal strength amongst those genes which encode 
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transcription factors and whose expression were upregulated in the absence of Foxa1/2.  

Ikzf2 was more highly expressed in Foxa1/2cKO than control, but is not required for 

differentiation at this stage of development; Elk4 was also more highly expressed, but is 

required for positive selection and upregulated by TCR signal transduction, rather than 

functioning as a negative regulator(39, 52-54).   

We then carried out Gene ontology (GO) term enrichment analysis of all DEG between 

Foxa1/2cKO and control CD69+DP datasets. This revealed over-representation of genes 

associated with terms connected with immunity and T-cell mediated immunity, including 

lymphocyte migration, cytokine signalling, cell killing and apoptotic process (Fig 4B and 

Table S2). Thus, as well as an overall enrichment in immunity related terms, as expected 

from the cell type, there was enrichment for terms related to processes required for 

differentiation to SP, such as lymphocyte migration, as differentiating cells must migrate to 

the medulla to complete their maturation and repertoire selection. Several terms related to 

cytokine signalling are also pertinent to the partial arrest at the DP and CD4+CD8lo stage in 

the Foxa1/2 cKO, as cytokine signalling rescues cells whose MHCI-restricted TCR signal has 

been interrupted by down-regulation of CD8, allowing differentiation to CD8SP, whereas 

cytokine signalling is inhibited for differentiation to the CD4SP compartment.     

Additionally, there was enrichment for the term ‘chromatin silencing’, related to the known 

function of Foxa transcription factors as pioneer factors. The GO analysis also showed 

enrichment for several terms related to RNA splicing, and for terms connected to cell matrix 

adhesion (Fig 4B). Amongst the top 20 most statistically significant DEG were genes 

associated with these processes (Fig 4C): for example, Mmp14, a membrane bound matrix 

metalloproteinase involved in breakdown of the extracellular matrix(55);  H1f0,  an H1 linker 

histone necessary for the condensation of nucleosome chains into higher-order chromatin 

structures, which is involved in the regulation of mRNA splice site recognition(56, 57); and 

Mbnl1, a regulator of alternative splicing, which functions in the control of T-cell 

development, and is over-expressed in mixed lineage leukemia(58-61).   
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Several other RNA splicing genes were differentially expressed between Foxa1/2cKO and 

control datasets (Fig 4D).  Given this, and the fact that the GO enrichment analysis identified 

several terms associated with RNA splicing, we hypothesized that Foxa1/2 might regulate 

the transition from DP to SP cell and positive selection by influencing RNA splicing in 

developing T-cells. To test this, we compared differential exon usage (DEU) between 

Foxa1/2cKO and control CD69+DP RNA-sequencing datasets. This analysis identified 852 

events of differential exon usage (FDR p<0.05) between the conditional knockout and 

control, which involved 628 different genes, 222 (~35%) of which had previously been 

shown to bind to Foxa1/2 in genome-wide ChipSeq analysis of Foxa1/2 binding sites in 

dopaminergic neuronal progenitors (Fig 4E and Table S3). Conditional deletion of Foxa1/2 

therefore led to a greater number of changes in exon usage affecting more genes than the 

number of individual genes that were differentially expressed.  Intersection between DEG 

and genes which contained differentially used exons revealed just 22 DEG (whose overall 

expression was differentially regulated and which also showed differential usage of 

individual exons) (Fig 4F), 18 of which (>80%) had previousy verified Foxa1/2 binding sites 

(Table S1).  This intersection included several genes involved in the regulation of RNA 

splicing, with known splicing variants (Fig 4G): Ranbp2, a nucleoporin protein, controls 

alternative splicing patterns during nuclear speckle formation(62); Sf3b1, a well known 

splicing factor, mutations of which lead to myelodysplasia and anemia by globally disrupted 

splicing(63, 64); and Smg1 which is mutated in Acute Myeloid Leukemia, its depletion 

resulting in disruption of alternative splicing(65, 66). 

GO term enrichment analysis of genes which showed DEU revealed over-representation of 

genes associated with terms connected with the known functions of Foxa1/2 in metabolic 

processes (metabolic process, cellular glucose homeostasis, response to insulin) and with 

their known functions in other tissues as epigenetic regulators and pioneer transcription 

factors (e.g. chromosome organization, chromatin remodeling, regulation of histone 

methylation, DNA methylation, DNA conformational change) (Fig 5A and Table S4). Many 

terms associated with mRNA splicing were also over-represented (Fig 5A). Genes involved in 

mRNA splicing showed multiple changes in exon usage, indicating that mRNA splicing factors 

are themselves subject to alternative splicing in developing T-cells, and that the regulatory 
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effects on splicing of the Foxa transcription factors may be amplified by regulation of 

splicing of components of the splicing machinery (Fig 5B-D). Additionally, the enrichment 

analysis highlighted positive regulation of NFK signalling, a pathway which has been shown 

to regulate alternative splicing in T-cells(67). 

 

Foxa1 and Foxa2 regulate alternative splicing of essential genes for T-cell development 

GO terms associated with T-cell development and function showed over-representation of 

DEU genes (Fig 6A): for example, thymic T-cell selection; T-cell receptor signalling pathway; 

regulation of CD8-positive  differentiation; lymphocyte differentiation; CD4-positive 

alpha-beta T-cell differentiation. Thus, Foxa1/2 control exon usage for genes involved in 

processes essential for the transition from DP to SP cell.  Multiple differentially used exons 

were found in key genes for this transition, such as Ikzf1, Ptprc, Stat5a, Stat5b, Cd28 and 

Klf13 (Fig 6B)(9, 68-71), and many other essential genes for T-cell development showed 

differential usage of a single exon (for example: Notch1, Rorc, Socs1, Pten, Orai1, Cbfb and 

Ets2) (Fig 6B and Table S3). Many of the T-lineage genes which contained significantly 

differential exon usage have been previously described to be alternatively spliced during 

lymphocyte development or activation, such as the Ikaros family members, Fyn, Ptprc 

(CD45), Stat5a, Stat5b and Cd28(72, 73)(Fig 6B-E). However, the differential exon usage 

caused by absence of Foxa1 and Foxa2 did not always correspond to well-described 

alternative spliced variants of these genes. For example, alternative splicing of Ptprc exons 

4, 5 and 6 is functionally important in T-cell differentiation(73), but in our datasets despite 

variation in expression of exon 5, only exons 2, 9, 13 were significantly different between 

control and conditional knockout after adjustment for false discovery (p<0.05) (Fig 6B and 

E).  Likewise, for Ikzf1, Ikzf2 and Ikzf3 we identified differentially expressed exons that were 

distinct from the alternative splice variants described in mouse thymocytes(74), indicating 

that absence of Foxa1 and Foxa2 led to wide dysregulation in the RNA splicing of genes that 

would normally display splice variants (Fig 6B-C).    
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Given the many changes in exon usage observed in genes required for T-cell development 

and positive selection, it seemed likely that Foxa1/2’s function during positive selection is to 

regulate RNA splicing of essential genes for developmental progression. Therefore, to 

investigate the impact of Foxa1/2 on the normal splicing of regulators of development, we 

identified transcription factors within the genes that showed DEU between Foxa1/2cKO and 

control.  Of the 628 genes that showed DEU, 97 (15.5%), encoded transcription factors (Fig 

7A and Table S2), many of which are important during T-cell development, and are 

specifically required for the transition from DP to SP cell (for example, Yy1, Trim28, Tcf7, 

Tcf3, Tcf12, Stat5a, Stat5b, Sp3, Rorc, Klf13, Cbfb) (Fig 7B).   

 

Discussion 

Here we show that the pioneer transcription factors Foxa1 and Foxa2 regulate alternative 

RNA splicing during T-cell development at the transition from DP to SP thymocyte.  

Conditional deletion of Foxa1 and Foxa2 from developing DP thymocytes led to reduced 

positive selection and a partial arrest at the transition from DP to SP thymocyte, with a 

reduction in SP cell maturation, and a reduced peripheral naïve CD4 T-cell population. 

Conditional deletion of Foxa1 and Foxa2 also led to significant changes in the expression of 

genes that regulate RNA splicing in cells undergoing positive selection, and concomitantly to 

>850 significantly differentially used exons.   

Alternative RNA splicing is a mechanism that enables cells to generate many different 

proteins from a limited number of genes and is important in the regulation of development 

processes, including T-cell development(60, 67, 72, 75, 76).  Our study indicates that Foxa1 

and Foxa2 regulate the mRNA splicing of many genes that are important for progression at 

this developmental transition, and we therefore propose that aberrant RNA splicing of 

multiple genes may account at least in part for the reduction in positive selection and 

differentiation to SP cell observed when Foxa1 and Foxa2 were conditionally deleted from 

DP cells.  In support of this, many of the genes that showed DEU, but were not DEG, 

between Foxa1/2cKO and control datasets are well-known to be required at this transition 

(eg. Socs1, Ptprc, Rasgrp1,); and many encode transcriptional regulators of this stage of 

development (eg. Ikzf1, Stat5a, Stat5b, Cbfb, Tcf7, Tcf3, Tcf12, Klf13, Sp3, Rorc). GO term 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

enrichment analysis also highlighted terms associated with positive selection and 

differentiation to SP.  In contrast, few DEG encoded known relevant transcription factors or 

regulators of TCR repertoire selection or differentiation from DP to SP, and Themis, a DEG 

with verified Foxa1/2 binding site, which was more highly expressed in the conditional 

knockout, and which can modulate TCR signalling in thymocytes, also showed differential 

exon usage. The way in which the transcriptional activity of Foxa1/2 relate to their 

regulation of splicing will require further investigation, as there is increasing evidence that 

splicing can occur co-transcriptionally as well as post-transcriptionally(77).  Interestingly, 

approximately one third of genes which showed DEU but were not DEG had previously been 

shown to bind directly to Foxa1/2 in neuronal progenitors, suggesting that Foxa1/2 may act 

directly to regulate their splicing.  

Overall, we identified only 176 DEG between Foxa1/2cKO and control CD69+DP cells, and of 

these more than 60% were more highly expressed in the conditional knockout than control, 

suggesting either that they were directly repressed by Foxa1/2, most likely by association of 

Foxa1/2 with a co-repressor, or that Foxa1/2 activate the transcription of an intermediate 

transcriptional repressor.  Approximately 48% of DEG have been previously been shown to 

bind Foxa1/2 in whole genome ChipSeq screen of neuronal progenitors, suggesting that 

they were also likely to be direct targets (directly bound by Foxa1/2) in developing T-cells.  

These were distributed between DEG that were up- or down-regulated in the Foxa1/2cKO 

compared to control, and ~51% of up-regulated genes have previously been shown to bind 

Foxa1/2 by ChipSeq screening in other cell types(34, 44).  We therefore think it is most likely 

that absence of Foxa1/2 in CD69+DP cells led to increased expression of these DEG because 

of a direct repressive impact of Foxa1/2 binding to these sites and recruitment of a co-

repressor in control cells, rather than indirectly by transcriptional activation of an unknown 

downstream repressor of transcription. Although in cell transfection assays Foxa factors 

behave as transcriptional activators, Foxa1/2 have previously been shown to have repressor 

activity in other developing tissues, and Foxa2 has been shown to interact with the 

transcriptional co-repressor Tle family of proteins(34, 78, 79). Further investigation of 

Foxa2/Tle interactions in the regulation of differentiation from DP to SP cell will therefore 
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be important, given that Tle1, Tle3 and Tle4 are together required for commitment to the 

CD8 lineage at the transition from DP to SP(80).   

Foxa1/2 conditional deletion led to increased transcription of several RNA splicing 

regulators, including Sf3b1, Smg1, and Mbnl1, mutation of which are associated with 

haematological malignancies and aberrant RNA splicing, but also significantly decreased 

transcription of splicing factors (Prpf40b, Hnrnpa1, Snrpd3) and the histone linker H1f0, 

which may be required for mRNA splice site recognition(56, 58-61, 63-66).  Overall loss of 

Foxa1 and Foxa2 led to broad changes in splicing events, indicating that Foxa1 and Foxa2 

are important regulators of mRNA processing during T-cell development. Foxa1/2 also 

regulated the mRNA slicing of many genes that encode splicing factors, suggesting that their 

influence on the splicing machinery is further amplified by regulation of alternative splicing 

of splicing components, as well as by a more direct effect on the transcription of splicing 

regulators, RNA binding and histone linkers proteins.  

Mbnl1 is highly expressed in the thymus and a recent study demonstrated that its 

constitutive knock out led to a hyperplastic thymus with retention of thymocytes and many 

mis-splicing events(60).  Mbnl1 was upregulated approximately two-fold in CD69+DP cells in 

the absence of Foxa1 and Foxa2 and was one of the most significantly differentially 

expressed genes in our datasets.  In Foxa1/2cKO DP thymocytes we observed differential 

exon usage in some of the same genes that were affected when Mbnl1 was consititutively 

deleted: for example, Tcf7 exon(E)10 was affected by absence of Mbnl1, whereas our 

datasets showed changes in Tcf7 E1 and E6; Map4k4 E20 was affected in Mbnl1-/- thymus, 

but Foxa1/2cKO led to changes in Map4k4 E15 and E33; Sptan1 E23 was affected in Mbnl1-

/- thymus, but Foxa1/2cKO changed usage of Sptan1 E2, E11, E12 and E49(60).   

Conditional deletion of Foxa1 alone from DP thymocytes did not grossly affect T-cell 

development, and the double Foxa1/2cKO had a stronger impact on differentiation from DP 

to SP than the single Foxa2cKO, suggesting overlapping or redundant functions, so that 

while Foxa1 may not be required at this developmental transition it can partially replace the 

requirement for Foxa2.  Foxa1 and Foxa2 have compensatory and partially redundant roles 

in other tissues, including liver(22) and a recent study showed that conditional deletion of 

the third Foxa protein (Foxa3) in addition to Foxa1 and Foxa2 in adult liver abrogated liver 
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gene regulatory networks, destroying liver tissue homeostasis and function in the adult(30).  

It will therefore be important in the future to investigate the potential compensatory role of 

Foxa3 in T-cell development. 

 

 

Materials and Methods  

Mice 

CD4-Cre transgenic mice were purchased from the Jackson Laboratory. Foxa1flox/flox 

Foxa2flox/flox mice were provided by Dr. Siew-Lan Ang(81). These mice were backcrossed to 

C57BL/6 strain for at least 6 generations. C57BL/6 mice were purchased from Envigo (UK). 

All mice were bred and maintained at University College London (UK) under UK Home Office 

regulations. 

To selectively delete Foxa1 and/or Foxa2 in T-cells, we crossed Foxa1flox/flox  and Foxa2flox/flox 

mice with CD4-cre+ mice.  Subsequently, Foxa1flox/flox Foxa2flox/flox CD4-cre+ mice were bred. 

In this paper, we will refer these mice as Foxa1/2cKO. Similarly, the Foxa1flox/flox CD4-cre+ is 

termed Foxa1cKO and the Foxa2flox/flox CD4-cre+ is termed Foxa2cKO. For all experiments 

their control genotype is the CD4-cre- littermate with the same floxed alleles as the 

experimental animals.  

 

Genotyping 

DNA from mice was extracted by lysis buffer containing 50mM KCL, 10mM Tris HCL (pH8.5), 

1.5mM MgCL2, 0.01% gelatin, 0.45% Nonidet P-40, 0.45% Tween 20, and 0.5g/ml 

Protinease K in ultra pure water and incubating at 56oC overnight. PCR analysis was as 

described(82). Primer sequences for PCR to detect the CD4-cre transgene were forward 

5’CGATGCAACGAGTGATGAGG3’, reverse 5’GCATTGCTGTCACTTGGTCGT3’. 

The PCR conditions for CD4-cre transgene were 1 min at 94°C, 1 min at 61°C, and 1 min at 

72°C for 35 cycles.  Foxa1 and Foxa2 WT and floxed gene primers and PCR conditions were 

as described (25). 
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Cell sorting 

To obtain DN3 (CD4-CD8-CD25+CD44-), DN4 (CD4-CD8-CD25-CD44-), DP (CD4+CD8+), CD4SP 

(CD4+CD8-CD3+), CD8SP (CD4-CD8+CD3+) and CD69+DP (CD4+CD8+CD69+) thymocyte cell 

suspensions were sorted using Molecular Flow Cytometer (Cytomation, Fort Collins, CO). 

 

Quantitative RT-PCR 

RNA was extracted using Stratagene Strataprep Total RNA miniprep kit according to 

manufacturer’s protocol and cDNA was synthesised using SuperScript III kit (Invitrogen) 

according to manufacturer’s protocol. RT-PCR was carried out by analysis of cDNA sample in 

triplicate on an iCycler (Bio-rad Laboratories) using the iQTMSYBR Green Supermix according 

to manufacturer’s instructions. The house keeping gene Gapdh was used to allow 

quantification of template and normalisation of each gene. Gapdh, Foxa1 and Foxa2 RT-PCR 

primers were purchased from Qiagen (Quantitect primer assay).  

 

Antibodies and flow cytometry 

Cells were stained using combinations of the following directly conjugated antibodies 

supplied by Biolegend (San Diego, US) or eBioscience (San Diego, US) : anti-CD3, anti-CD4, 

anti-CD5, anti-CD8, anti-CD24, anti-CD44, anti-CD62L, anti-CD69, anti-Foxp3, anti-NK1.1, 

anti-Qa2 anti-Nr4a1 and anti-TCRSupplementary Table 5). Cell suspensions were stained 

for 30 minutes on ice in phosphate buffered saline supplemented with 2% FCS and 0.01% 

sodium azide. For intracellular Foxp3 and Nr4a1 staining, cells were fixed and permeabilised 

using the ICfixation/permeabilisation kit (eBioscience). AnnexinV staining was carried out as 

described (83).  Samples were analysed on an Accuri™ C6 flow cytometer (BD, Oxford, UK) 

and LSRII (BD Biosciences). Data were analyzed using FlowJo 10.4.2 (Tree Star). 

 

RNA-sequencing and data analysis 

CD69+CD4+CD8+ thymocytes from Foxa1/2cKO and control thymus were FACS sorted. Each 

sample was sorted independently from different mice, with 2 mice of each genotype per 

sort. RNA was prepared as described(84) and sequenced by UCL Genomics on the Illumina 

Next Seq 500. The sequenced data are publically available in the GEO database under 
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accession number GSE169602. The Basespace Sequence Hub was used for both FASTQ 

generation and RNA-Seq Alignment to the mouse reference genome UCSC mm10 (RefSeq 

gene annotation). Aligned reads were counted by the HTSeq python package with “union” 

overlap resolution mode(85). The Bioconductor package DESeq2 (1.30.0) was used to test 

for differential expression(86). P-values were plotted in a histogram resulting in a hill-shape, 

indicating an overestimation of the variance in the null distribution (Supplementary Fig 1). 

Therefore, the z-scores returned by DESeq2 were used as input to the CRAN package fdrtool 

(1.2.16) to re-estimate the null variance and subsequently the p-values(87). Adjusted p-

values were then calculated by Benjamini-Hochberg false discovery correction (5%). Genes 

with adjusted p-values less than 0.05 were considered as DEGs. 

The Bioconductor package DEXSeq (1.36.0) was used to test for differential exon usage(88, 

89). The Python script dexseq_prepare_annotation.py was used to prepare the genome 

annotation with the following parameter: “-r no”. Subsequently, dexseq_count.py was used 

to generate counts of exons using the BAM alignment files as input with the following 

parameters “-p yes -s no -a 0”. The exon count files were then inputted into DEXSeq. 

Adjusted p-values were then calculated by Benjamini-Hochberg false discovery correction 

(5%). 

To identify over-represented gene ontology terms in the set of DEG and genes containing 

DEU, we used the Bioconductor package GOseq (1.42.0)(90). For data visualisation, we used 

regularized logarithm (rlog) transformed counts generated by DESeq2 as input for 

heatmaps, which were generated using the CRAN package pheatmap (1.0.12): rows were 

centred; unit variance scaling was applied to rows; and both rows and columns were 

clustered using Pearson correlation distance and average linkage, where red represents 

higher expression and blue lower expression on a linear correlation scale. A value of 1 

indicates a positive association, while a value of -1 indicates a negative association, and a 

value of 0 indicates no association.  Venn diagrams were generated using the CRAN package 

VennDiagram (1.6.20). 
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To identify verified transcription factors amongst DEG and DEU genes we merged the most 

recent updated lists from the Riken mouse transcription factor database (91) and the mouse 

transcription factor list from The Animal Transcription Factor DataBase (92) and intersected 

our gene lists with this merged list.   

Canonical correspondence analysis is a multivariate analysis that allows the comparison of 

experimental transcriptome data with publically available datasets from other 

laboratories(93).  CCA was performed using the CCA function of CRAN package vegan, as 

previously described (83). The GSE38909 dataset was used as the environmental variable 

and our dataset was regressed onto it. The GSE38909 dataset contains TCR-transgenic AND 

DP thymocytes stimulated with a positively selecting peptide (gp250) or a non-selecting 

control peptide Hb (49). To represent environmental variables of interest, the 2000 most 

significant DEG (lowest p-values, calculated by moderated eBayes adjusted for false 

positives) between DP thymocytes stimulated with a non-selecting control peptide and DP 

thymocytes stimulated with the positively selecting peptide were used, to generate a scale 

of unstimulated to TCR-signalling-for-positive-selection, and we regressed our datasets onto 

this axis. 
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Figure 1. Foxa1 and Foxa2 are expressed in thymocytes and required in T-cell 

development 

(A) Foxa1 and Foxa2 expression were measured by QRT-PCR in FACS-sorted thymocyte 

populations from wild type (C57BL/6) adult mice: DN3 (CD4-CD8-CD25+CD44-); DN4 (CD4-

CD8-CD25-CD44-); DP (CD4+CD8+); CD4SP (CD4+CD8-CD3+); CD8SP (CD4-CD8+CD3+). Bar charts 

show relative expression of Foxa1 (left panel) and Foxa2 (right panel) in these FACS-sorted 

populations.  

(B) Bar charts show relative expression of Foxa1 (left panel) and Foxa2 (right panel) 

measured by QRT-PCR in FACS-sorted CD4SP (CD4+CD8-CD3+) and CD8SP (CD4-CD8+CD3+) 

cells from Foxa1/2cKO and control thymus.  

(C) Scatter plots show number of cells recovered from thymus of Foxa1cKO, Foxa2cKO and 

Foxa1/2cKO mice compared to control littermates.  

(D-F) Flow cytometry profiles show anti-CD4 and anti-CD8 staining, giving percentage cells in 

regions shown for Foxa1cKO (D), Foxa2cKO (E) and Foxa1/2cKO (F) thymus compared with 

control littermate thymus. 

(G) Bar chart shows change in percentage of thymocyte population in cKO relative to control 

littermates (mean percentage of each population in control littermates subtracted from 

relative percentage of same population in conditional knockout) in Foxa1cKO, Foxa2cKO and 

Foxa1/2cKO thymus.  For control vs Foxa1cKO: control n=5, Foxa1cKO n=5; for control vs 

Foxa2cKO: control n=9, Foxa1cKO n=9; for control vs Foxa1/2cKO: control n=15, Foxa1/2cKO 

n=16. 

(H-I) Scatter plots show number of cells in DP (H) and CD4SP and CD8SP (I) populations in 

Foxa1/2cKO mice compared to control.  

(J) Bar chart shows change in thymocyte subset ratio in Foxa1/2cKO relative to control 

littermates, calculated by mean ratio of control littermates subtracted from relative ratio 

from  Foxa1/2cKO; control n=15, Foxa1/2cKO n=16.  

(K) Histograms show staining of anti-TCR on thymocytes, giving the percentage of cells in 

the marker shown (TCRhi).  Scatter plot shows the percentage of TCRhi cells in control and 

Foxa1/2cKO littermates. 
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(L) Flow cytometry profiles show anti-CD4 and anti-CD8 staining of thymus, gated on the 

TCRhi population, giving the percentage of cells in the regions shown. Dot plot shows the 

percentage of DP, CD4+CD8lo, CD4SP and CD8SP, gated on TCRhi in Foxa1/2cKO and control 

thymus. 

In scatter plots each symbol represents an individual mouse, control (dark circles) and 

Foxa1/2cKO (open circles). Bar charts and scatter plots show mean and SEM, giving 

significance by Student’s t test: * p<0.05; **p<0.01, ***p<0.001.  
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Figure 2. Maturation of SP and peripheral T-cells in Foxa1/2 cKO mice 

(A) Flow cytometry profiles show anti-HSA and anti-CD69 staining on CD4SP and CD8SP 

cells, giving the percentage of cells in the region shown. Scatter plot shows the percentage 

of HSA+CD69+ cells in the CD4SP and CD8SP populations for control and Foxa1/2cKO. 

(B) Flow cytometry profiles show anti-Qa2 staining, gated on CD4SP, giving the percentage 

of cells in the region shown. Scatter plot shows percentage of Qa2+ cells in the CD4SP 

population.  

(C) Flow cytometry profiles show anti-CD62L staining, gated on the CD69-CD4SP population. 

Scatter plot shows the percentage of CD62L+ cells in the CD69-CD4SP population. 

(D) Percentage of Tregs (CD8-CD4+CD25+icFoxp3+) in the control and Foxa1/2cKO thymus.  

(E) Percentage of NK (CD3-NK1.1+) and NKT-cells (CD3+NK1.1+) in the control and 

Foxa1/2cKO thymus. 

(F-G) Flow cytometry profiles show anti-CD4 and anti-CD8 staining of spleen (F) and lymph 

node (LN) (G) in Foxa1/2cKO and control mice. Bar charts represent percentage change in T-

cell composition and actual cell numbers in conditional knockout mice relative to control 

littermates in spleen (F) and LN (G).  Differences in percentage were calculated by 

subtraction of mean percentage or number of population in control littermates from the 

relative percentage or number of the population in cKO.  

(H) Flow cytometry profiles show anti-CD44 and anti-CD62L staining, gated on CD4+ T-cells 

in Foxa1/2cKO and control spleen, giving the percentage of cells in the region shown. 

Scatter plots show percentage of CD44-CD62L+  cells (gated on CD4+) and number of CD44-

CD62L+ CD4+ T-cells (naive T-cells) in Foxa1/2cKO and control spleen. 

In scatter plots each symbol represents an individual mouse, control (dark circles) and 

Foxa1/2cKO (open circles). Scatter plots and bar charts show mean and SEM, giving 

significance by Student’s t test: * p<0.05; **p<0.01, ***p<0.001. 
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Figure 3. Foxa1/2 regulates TCR signal and promotes positive T-cell selection   

(A) Flow cytometry profiles show intracellular anti-Nr4a1 staining, gated on DP, CD4SP and 

CD8SP in control and Foxa1/2cKO thymus. Scatter plot shows percentage of Nr4a1hi in DP, 

CD4SP and CD8SP populations.  

(B) Scatter plot shows MFI of anti-CD5 staining on DP, CD4SP and CD8SP populations. 

(C-D) Histograms show staining of anti-TCR(C) and anti-CD69(D) on the DP population in 

control and Foxa1/2cKO thymus. Scatter plots show percentage of TCRhi(C) and CD69+(D) 

on DP populations. 

(E) Pie chart represents the proportion of DEG that were upregulated (red) or 

downregulated (blue) in Foxa1/2cKO datasets compared to control.   

(F) Left: Pie chart illustrates number of DEG that were identified as binding Foxa1/2 in 

genome-wide ChipSeq analysis of Foxa1/2 binding sites in neuronal progenitors(34, 44) 

(purple) and DEG that were not (grey). Right: Pie chart represents those 85 DEG that were 

found to be Foxa1/2-binding, as defined in (F), that were upregulated (red) or down-

regulated (blue) in our Foxa1/2cKO datasets.  

(G) Pie chart represents number of DEG that are associated with positive selection(45) 

(yellow) and that are not associated with positive selection (blue). Pearson correlation 

clustering heatmap shows expression of selected positive selection associated DEG in 

control and Foxa1/2cKO, where red represents higher expression and blue lower expression 

on a linear correlation scale. A value of 1 indicates a positive association, while a value of -1 

indicates a negative association, and a value of 0 indicates no association.  

(H) Dot plot shows canonical correspondence analysis on a scale of unstimulated to TCR-

signalling-for positive-selection(49). 

(I) Flow cytometry profiles show anti-TCR and anti-CD69 staining, giving the percentage in 

regions shown for TCRloCD69- (pre-selection), TCRintCD69+(selecting), TCRhiCD69+  

(post initiation of positive selection) and TCRhiCD69-(mature). Histogram shows mean 

percentage of cells in these four subsets, defined by staining against TCR and CD69. 

(J) Scatter plot shows percentage of Annexin V+ cells in the CD69+DP population. 
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(K) Flow cytometry profiles show anti-CD4 and anti-CD8 staining gated on the TCRhiCD69- 

population. Histogram shows the mean percentage of each thymocyte subpopulation, gated 

on TCRhiCD69-. 

In scatter plots each symbol represents an individual mouse, control (dark circles) and 

Foxa1/2cKO (open circles). Scatter plots and bar charts show mean and SEM, giving 

significance by Student’s t test: * p<0.05; **p<0.01. 
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Figure 4. Foxa1/2 deficiency disturbs exon usage in developing T-cells 

(A) Pearson correlation clustering heatmap shows expression of DEG that encode 

transcription factors in control and Foxa1/2cKO, where red represents higher expression 

and blue lower expression on a linear correlation scale. A value of 1 indicates a positive 

association, while a value of -1 indicates a negative association, and a value of 0 indicates no 

association. 

(B) Dot plot of Gene Ontology (GO) analysis of biological processes associated with 176 DEG. 

The y-axis represents the biological process GO terms and the x-axis represents the 

percentage of genes found in that GO term category. Dot size represents the number of 

genes and the color indicates the p-value. 

(C) Pearson correlation clustering heatmap shows expression of 20 most significant DEG in 

control and Foxa1/2cKO, where red represents higher expression and blue lower expression 

on a linear correlation scale. A value of 1 indicates a positive association, while a value of -1 

indicates a negative association, and a value of 0 indicates no association.   

(D) Pearson correlation clustering heatmap shows expression of DEG associated with RNA 

splicing in control and Foxa1/2cKO, where red represents higher expression and blue lower 

expression on a linear correlation scale. A value of 1 indicates a positive association, while a 

value of -1 indicates a negative association, and a value of 0 indicates no association. (E) Pie 

chart illustrates number of genes showing DEU: purple section represents number of genes 

that are identified as Foxa1/2 targets in genome-wide ChipSeq analysis of Foxa1/2 binding 

sites in neuronal progenitors(34, 44). 

(F) Proportional Venn diagram illustrates the intersection between DEG and genes showing 

DEU.  

(G) Pearson correlation clustering heatmap shows expression of the 22 DEG which show 

DEU, where red represents higher expression and blue lower expression on a linear 

correlation scale. A value of 1 indicates a positive association, while a value of -1 indicates a 

negative association, and a value of 0 indicates no association.  
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Figure 5. Foxa1/2 regulate alternative splicing of splicing factors  

(A) Dot plot of Gene Ontology (GO) analysis for genes showing DEU. Biological processes 

involving pioneer function, methylation, metabolic processes and RNA splicing are shown. 

The y-axis represents the biological process GO terms and the x-axis represents the 

percentage of genes found in that GO term category. Dot size represents the number of 

genes and the color indicates the p-value.  

(B) Bar chart shows genes that contain DEU which are involved in mRNA splicing. Genes 

shown in colour show multiple DEU, genes in black show single differential exon changes.  

(C-D) DEXSeq representation of Prpf8 (C) and Hnrnpab (D) that show significant differential 

exon usage between Foxa1/2 cKO (red) in comparison to control (blue). The exons 

highlighted in pink have differential exon usage (FDR ≤ 0.05). 
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Figure 6. Foxa1/2 regulates alternative splicing of genes required for T-cell development    

(A) Dot plot of Gene Ontology (GO) analysis for genes showing DEU. Biological processes 

associated with T-cell development and function are shown. The y-axis represents the 

biological process GO terms and the x-axis represents the percentage of genes found in that 

GO term category. Dot size represents the number of genes and the color indicates the p-

value.  

(B) Bar chart shows genes with DEU that are involved in T-cell development. Genes in colour 

represent those with multiple differential exon changes; genes in black have single 

differential exon changes.  

(C-E) DEXSeq representation of Ikzf1, Ikzf2, Ikzf3 (C), Stat5a, Stat5b (D) and Ptprc (E) that 

show significant differential exon usage between Foxa1/2 cKO (red) in comparison to 

control (blue). The exons highlighted in pink have differential exon usage (FDR ≤ 0.05). 
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Figure 7. Foxa1/2 regulates alternative splicing of genes that encode transcription factors 

required for the transition from DP to SP thymocyte 

(A) Pie chart illustrates the number of genes showing DEU. Purple section represents 

number of genes that encode transcription factors, and grey section represents number of 

genes that do not encode transcription factors. 

(B) Proportional Venn diagram illustrates the intersection between DEG that encode 

transcription factors (pink) and and genes showing DEU that encode transcription factors 

(green), listing the genes in each category. 
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Fig. S1. P-value histogram showing before and after correction of overestimation of variance. 
Left, histogram of P-values obtained using DeSeq2 showing a hill-shape, indicating an 
overestimation of the variance in the null distribution. Right, histogram of P-values after z-
scores returned by DESeq2 were used as input to fdrtool to re-estimate the null variance. 
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Fig. S2. (A) Flow cytometry profiles show anti-Qa2 staining, gated on CD8SP, giving the 
percentage of cells in the region shown.  Scatter plot shows percentage of Qa2+ cells in the 
CD8SP population. (B) Flow cytometry profiles show anti-CD62L staining, gated on the CD69-

CD8SP population. Scatter plot shows the percentage of CD62L+ cells in the CD69-CD8SP 
population. 
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Qa2 on CD8SP

Table S1. RNA-Seq datasets from CD4+CD8+CD69+ thymocytes between control and 
Foxa1/2cKO. 
List of DEG (adjusted p-value < 0.05).  
Gene names highlighted in blue indicate genes found in Foxa2 targets in (34).  
Gene names highlighted in pink indicate genes found in Foxa1 targets in (44). 
Gene names highlighted in purple indicate genes found in both Foxa1 and Foxa2 targets in 
(34, 44). 
Gene names in green indicate genes transcriptionally regulated during positive selection (45). 

Click here to download Table S1

Table S2. Biological Processes(BP) GO term enrichment analysis of DEG GO analysis 
of biological processes associated with 176 DEG. 

Click here to download Table S2

Table S3. Differential exon usage analysis by DEXSeq from CD4+CD8+CD69+ thymocytes 
between control and Foxa1/2cKO. 
List of the DEU (adjusted p-value < 0.05). 
*CD4-Cre transgene contains first 2 exons of CD4 (Exon9 and 10 on reverse strand)(94)
Gene names highlighted in blue indicate genes found in Foxa2 targets in (34).  
Gene names highlighted in pink indicate genes found in Foxa1 targets in (44). 
Gene names highlighted in purple indicate genes found in both Foxa1 and Foxa2 
targets in (34, 44). 

Click here to download Table S3

Table S4. Biological Processes(BP) GO term enrichment analysis of DEU 
GO analysis of biological processes associated with genes containing DEU. 
padj = p-value after Benjamini-Hochberg false discovery correction 

Click here to download Table S4

Development: doi:10.1242/dev.199754: Supplementary information
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CD8 Brilliant Violet 421 100737 Biolegend 

CD8 PE 100707 Biolegend 

CD24 Brilliant Violet 605 101827 Biolegend 

CD44 Brilliant Violet 421 103039 Biolegend 

CD62L APC 104411 Biolegend 

CD69 APC/Cyanine7 104525 Biolegend 

Foxp3 Alexa Fluor® 647 126407 Biolegend 

NK1.1 PE/Cyanine7 156513 Biolegend 

Qa2 FITC 121709 Biolegend 

Nr4a1 PE 12-5965-82 eBioscience 

TCRb PE/Cyanine7 109221 Biolegend 

Table S5. List of antibodies used in the study 
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