30 research outputs found

    Statistical HOmogeneous Cluster SpectroscopY (SHOCSY): an optimized statistical approach for clustering of ¹H NMR spectral data to reduce interference and enhance robust biomarkers selection.

    Get PDF
    We propose a novel statistical approach to improve the reliability of (1)H NMR spectral analysis in complex metabolic studies. The Statistical HOmogeneous Cluster SpectroscopY (SHOCSY) algorithm aims to reduce the variation within biological classes by selecting subsets of homogeneous (1)H NMR spectra that contain specific spectroscopic metabolic signatures related to each biological class in a study. In SHOCSY, we used a clustering method to categorize the whole data set into a number of clusters of samples with each cluster showing a similar spectral feature and hence biochemical composition, and we then used an enrichment test to identify the associations between the clusters and the biological classes in the data set. We evaluated the performance of the SHOCSY algorithm using a simulated (1)H NMR data set to emulate renal tubule toxicity and further exemplified this method with a (1)H NMR spectroscopic study of hydrazine-induced liver toxicity study in rats. The SHOCSY algorithm improved the predictive ability of the orthogonal partial least-squares discriminatory analysis (OPLS-DA) model through the use of "truly" representative samples in each biological class (i.e., homogeneous subsets). This method ensures that the analyses are no longer confounded by idiosyncratic responders and thus improves the reliability of biomarker extraction. SHOCSY is a useful tool for removing irrelevant variation that interfere with the interpretation and predictive ability of models and has widespread applicability to other spectroscopic data, as well as other "omics" type of data

    So what do we really mean when we say that systems biology is holistic?

    Get PDF
    Background: An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners

    Optimal reaction coordinate as a biomarker for the dynamics of recovery from kidney transplant.

    Get PDF
    The evolution of disease or the progress of recovery of a patient is a complex process, which depends on many factors. A quantitative description of this process in real-time by a single, clinically measurable parameter (biomarker) would be helpful for early, informed and targeted treatment. Organ transplantation is an eminent case in which the evolution of the post-operative clinical condition is highly dependent on the individual case. The quality of management and monitoring of patients after kidney transplant often determines the long-term outcome of the graft. Using NMR spectra of blood samples, taken at different time points from just before to a week after surgery, we have shown that a biomarker can be found that quantitatively monitors the evolution of a clinical condition. We demonstrate that this is possible if the dynamics of the process is considered explicitly: the biomarker is defined and determined as an optimal reaction coordinate that provides a quantitatively accurate description of the stochastic recovery dynamics. The method, originally developed for the analysis of protein folding dynamics, is rigorous, robust and general, i.e., it can be applied in principle to analyze any type of biological dynamics. Such predictive biomarkers will promote improvement of long-term graft survival after renal transplantation, and have potentially unlimited applications as diagnostic tools

    Trends in the application of chemometrics to foodomics studies

    Full text link

    Metabolic profiling and population screening of analgesic usage in nuclear magnetic resonance spectroscopy-based large-scale epidemiologic studies

    Get PDF
    The application of a 1H nuclear magnetic resonance (NMR) spectroscopy-based screening method for determining the use of two widely available analgesics (acetaminophen and ibuprofen) in epidemiologic studies has been investigated. We used samples and data from the cross-sectional INTERMAP Study involving participants from Japan (n = 1145), China (n = 839), U.K. (n = 501), and the U.S. (n = 2195). An orthogonal projection to latent structures discriminant analysis (OPLS-DA) algorithm with an incorporated Monte Carlo resampling function was applied to the NMR data set to determine which spectra contained analgesic metabolites. OPLS-DA preprocessing parameters (normalization, bin width, scaling, and input parameters) were assessed systematically to identify an optimal acetaminophen prediction model. Subsets of INTERMAP spectra were examined to verify and validate the presence/absence of acetaminophen/ibuprofen based on known chemical shift and coupling patterns. The optimized and validated acetaminophen model correctly predicted 98.2%, and the ibuprofen model correctly predicted 99.0% of the urine specimens containing these drug metabolites. The acetaminophen and ibuprofen models were subsequently used to predict the presence/absence of these drug metabolites for the remaining INTERMAP specimens. The acetaminophen model identified 415 out of 8436 spectra as containing acetaminophen metabolite signals while the ibuprofen model identified 245 out of 8604 spectra as containing ibuprofen metabolite signals from the global data set after excluding samples used to construct the prediction models. The NMR-based metabolic screening strategy provides a new objective approach for evaluation of self-reported medication data and is extendable to other aspects of population xenometabolome profiling
    corecore