142 research outputs found

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping

    Full text link
    We study with Angle Resolved PhotoElectron Spectroscopy (ARPES) the evolution of the electronic structure of Sr2IrO4, when holes or electrons are introduced, through Rh or La substitutions. At low dopings, the added carriers occupy the first available states, at bottom or top of the gap, revealing an anisotropic gap of 0.7eV in good agreement with STM measurements. At further doping, we observe a reduction of the gap and a transfer of spectral weight across the gap, although the quasiparticle weight remains very small. We discuss the origin of the in-gap spectral weight as a local distribution of gap values

    Fermi Surface reconstruction in the CDW state of CeTe3 observed by photoemission

    Full text link
    CeTe3 is a layered compound where an incommensurate Charge Density Wave (CDW) opens a large gap (400 meV) in optimally nested regions of the Fermi Surface (FS), whereas other sections with poorer nesting remain ungapped. Through Angle-Resolved Photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3

    New electronic orderings observed in cobaltates under the influence of misfit periodicities

    Full text link
    We study with ARPES the electronic structure of CoO2 slabs, stacked with rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi Surfaces (FS) in phases with different doping and/or periodicities reveal the influence of the RS potential on the electronic structure. We show that these RS potentials are well ordered, even in incommensurate phases, where STM images reveal broad stripes with width as large as 80\AA. The anomalous evolution of the FS area at low dopings is consistent with the localization of a fraction of the electrons. We propose that this is a new form of electronic ordering, induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the FS becomes smaller than the Brillouin Zone of the stacked structure

    The degenerate 3-band Hubbard model with "anti-Hund's rule" interactions; a model for AxC60

    Full text link
    We consider the orbitally degenerate 3-band Hubbard model with on-site interactions which favor low spin and low orbital angular momentum using standard second order perturbation theory in the large Hubbard-U limit. At even integer filling this model is a Mott insulator with a non-degenerate ground state that allows for a simple description of particle-hole excitations as well as gapped spin and orbital modes. We find that the Mott gap is generally indirect and that the single particle spectrum at low doping reappears close to even filling but rescaled by a factor 2/3 or 1/3. The model captures the basic phenomenology of the Mott insulating and metallic fullerides AxC60. This includes the existence of a smaller spin gap and larger charge gap at even integer filling, the fact that odd integer stoichiometries are generally metallic while even are insulating, as well as the rapid suppression of the density of states and superconducting transition temperatures with doping away from x=3.Comment: Revised with additional reference

    Interplay of Superconductivity and Fermi-Liquid Transport in Rh-Doped CaFe2As2 with Lattice-Collapse Transition

    Full text link
    Ca(Fe1−x_{1-x}Rhx_x)2_2As2_2 undergoes successive phase transitions with increasing Rh doping in the TT == 0 limit. The antiferromagnetic-metal phase with orthorhombic structure at 0.00 ≀\le xx ≀\le 0.020 is driven to a superconducting phase with uncollapsed-tetragonal (ucT) structure at 0.020 ≀\le xx ≀\le 0.024; a non-superconducting collapsed-tetragonal (cT) phase takes over at xx ≄\geq 0.024. The breakdown of Fermi-liquid transport is observed in the ucT phase above TcT_{\rm c}. In the adjacent cT phase, Fermi-liquid transport is restored along with a disappearance of superconductivity. This interplay of superconductivity and Fermi-liquid transport suggests the essential role of magnetic fluctuations in the emergence of superconductivity in doped CaFe2_2As2_2.Comment: 11 pages, 4 figure

    Coexistence of Superconductivity and Charge Density Wave in SrPt2As2

    Full text link
    SrPt2As2 is a novel arsenide superconductor, which crystallizes in the CaBe2Ge2-type structure as a different polymorphic form of the ThCr2Si2-type structure. SrPt2As2 exhibits a charge-density-wave (CDW) ordering at about 470 K and enters into a superconducting state at Tc = 5.2 K. The coexistence of superconductivity and CDW refers to Peierls instability with a moderately strong electron-phonon interaction. Thus SrPt2As2 can be viewed as a nonmagnetic analog of iron-based superconductors, such as doped BaFe2As2, in which superconductivity emerges in close proximity to spin-density-wave ordering.Comment: 4 pages, 5 figure

    Experimental study of the incoherent spectral weight in the photoemission spectra of the misfit cobaltate [Bi2Ba2O4][CoO2]2

    Full text link
    Previous ARPES experiments in NaxCoO2 reported both a strongly renormalized bandwidth near the Fermi level and moderately renormalized Fermi velocities, leaving it unclear whether the correlations are weak or strong and how they could be quantified. We explain why this situation occurs and solve the problem by extracting clearly the coherent and incoherent parts of the band crossing the Fermi level. We show that one can use their relative weight to estimate self-consistently the quasiparticle weight Z, which turns out to be very small Z=0.15 +/- 0.05. We suggest this method could be a reliable way to study the evolution of correlations in cobaltates and for comparison with other strongly correlated systems

    Valence band electronic structure of V2O3: identification of V and O bands

    Full text link
    We present a comprehensive study of the photon energy dependence of the valence band photoemission yield in the prototype Mott-Hubbard oxide V2O3. The analysis of our experimental results, covering an extended photon energy range (20-6000 eV) and combined with GW calculations, allow us to identify the nature of the orbitals contributing to the total spectral weight at different binding energies, and in particular to locate the V 4s at about 8 eV binding energy. From this comparative analysis we can conclude that the intensity of the quasiparticle photoemission peak, observed close to the Fermi level in the paramagnetic metallic phase upon increasing photon energy, does not have a significant correlation with the intensity variation of the O 2p and V 3d yield, thus confirming that bulk sensitivity is an essential requirement for the detection of this coherent low energy excitation

    The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta

    Get PDF
    The physical properties of cometary nuclei observed today relate to their complex history and help to constrain their formation and evolution. In this article, we review some of the main physical properties of cometary nuclei and focus in particular on the thermal, mechanical, structural and dielectric properties, emphasising the progress made during the Rosetta mission. Comets have a low density of 480±220 kgm−3 and a low permittivity of 1.9–2.0, consistent with a high porosity of 70–80%, are weak with a very low global tensile strength −1m−2s−1/2 that allowed them to preserve highly volatiles species (e.g. CO, CO2, CH4, N2) into their interior since their formation. As revealed by 67P/Churyumov-Gerasimenko, the above physical properties vary across the nucleus, spatially at its surface but also with depth. The broad picture is that the bulk of the nucleus consists of a weakly bonded, rather homogeneous material that preserved primordial properties under a thin shell of processed material, and possibly covered by a granular material; this cover might in places reach a thickness of several meters. The properties of the top layer (the first meter) are not representative of that of the bulk nucleus. More globally, strong nucleus heterogeneities at a scale of a few meters are ruled out on 67P’s small lobe
    • 

    corecore