664 research outputs found

    Using error correction to determine the noise model

    Full text link
    Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.Comment: 10 pages, 3 figures. Added discussion section, improved figure

    Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease

    Get PDF
    Objective: Patients with Parkinson disease (PD) and mild cognitive impairment (MCI) are vulnerable to dementia and frequently experience memory deficits. This could be the result of dopamine dysfunction in corticostriatal networks (salience, central executive networks, and striatum) and/or the medial temporal lobe. Our aim was to investigate whether dopamine dysfunction in these regions contributes to memory impairment in PD. Methods: We used positron emission tomography imaging to compare D2 receptor availability in the cortex and striatal (limbic and associative) dopamine neuron integrity in 4 groups: memory‐impaired PD (amnestic MCI; n = 9), PD with nonamnestic MCI (n = 10), PD without MCI (n = 11), and healthy controls (n = 14). Subjects were administered a full neuropsychological test battery for cognitive performance. Results: Memory‐impaired patients demonstrated more significant reductions in D2 receptor binding in the salience network (insular cortex and anterior cingulate cortex [ACC] and the right parahippocampal gyrus [PHG]) compared to healthy controls and patients with no MCI. They also presented reductions in the right insula and right ACC compared to nonamnestic MCI patients. D2 levels were correlated with memory performance in the right PHG and left insula of amnestic patients and with executive performance in the bilateral insula and left ACC of all MCI patients. Associative striatal dopamine denervation was significant in all PD patients. Interpretation: Dopaminergic differences in the salience network and the medial temporal lobe contribute to memory impairment in PD. Furthermore, these findings indicate the vulnerability of the salience network in PD and its potential role in memory and executive dysfunction

    High-fidelity transmission of entanglement over a high-loss freespace channel

    Full text link
    Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols require the distribution of entangled states between distant parties. Here we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite quantum communication scenario. We confirm that the received two-photon states are still highly entangled by violating the CHSH inequality by more than 5 standard deviations. From a fundamental point of view, our results show that the photons are virtually not subject to decoherence during their 0.5 ms long flight through air, which is encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added journal referenc

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis

    Get PDF
    Methods An average and a "worst case scenario" shape in A-P view in a 2-D computer model of a scapula was created, using data from 200 "normal" scapulae, so that the position of the glenoid and humeral component could be changed as well as design features such as depth of the polyethylene insert, the size of glenosphere, the position of the center of rotation, and downward glenoid inclination. The model calculated the maximum adduction (notch angle) in the scapular plane when the cup of the humeral component was in conflict with the scapula. Results A change in humeral neck shaft inclination from 155 degrees to 145 degrees gave a 10 degrees gain in notch angle. A change in cup depth from 8 mm to 5 mm gave a gain of 12 degrees. With no inferior prosthetic overhang, a lateralization of the center of rotation from 0 mm to 5 mm gained 16 degrees. With an inferior overhang of only 1 mm, no effect of lateralizing the center of rotation was noted. Downward glenoid inclination of 0 boolean OR to 10 boolean OR gained 10 degrees. A change in glenosphere radius from 18 mm to 21 mm gained 31 degrees due to the inferior overhang created by the increase in glenosphere. A prosthetic overhang to the bone from 0 mm to 5 mm gained 39 degrees. Interpretation Of all 6 solutions tested, the prosthetic overhang created the biggest gain in notch angle and this should be considered when designing the reverse arthroplasty and defining optimal surgical technique
    corecore