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31062 Toulouse Cedex 9, France

boileau@picard.ups-tlse.fr

YI NI

Department of Mathematics, Columbia University
MC 4406, 2990 Broadway, New York, NY 10027, USA

yni@math.columbia.edu

SHICHENG WANG

LMAM, Department of Mathematics, Peking University
Beijing 100871, P. R. China

wangsc@math.pku.edu.cn

Received 10 January 2008
Revised 19 March 2008

Let k and k′ be two knots in the 3-sphere. Say k 1-dominates k′, if there is a proper
degree 1 map f : E(k) → E(k′).

Theorem: Suppose that any companion of k is prime. If k 1-dominates k′ with the
same Gromov volume, then k′ can be obtained from k by finitely many de-satellizations.

The condition of “same Gromov volume” clearly cannot be removed. We also give a
new construction of 1-domination between knots with the same Gromov volume to show
that the condition “any companion of k is prime” cannot be removed.
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1. Introduction and Notations

All knots are in the 3-sphere S3. For basic terminologies in knot theory and in
3–manifold theory, we refer the reader to [12], [7] and [8]. Two knots k1 and k2 in
the 3-sphere are equivalent if there is a homeomorphism of S3 sending k1 to k2.

We recall the following relation on the set of knots in S3: let k1 and k2 be
two knots, say k1 ≥ k2, or equivalently say that k1 1-dominates k2, if there is a
proper degree one map f : E(k1) → E(k2), where E(ki) is the exterior of the knot
ki. If k1 ≥ k2 but k1 �= k2, we often write k1 > k2, or equivalently say that the
1-domination is non-trivial.
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Following the classical results of [20] and [5], it is known that the relation ≥ is
a partial order on the set of equivalence classes of knots in S3.

In general, when k1 ≥ k2, the relation between k1 and k2 is not known, and
there is no fine description of the degree 1 map, up to homotopy, realizing the 1-
domination k1 ≥ k2. A simple and common construction of 1-domination k1 ≥ k2

is to build k1 by a satellization of k2 around some knot k, then a proper map f

realizing a 1-domination is given by a de-satellization which consists in pinching
the exterior of the knot k to a solid torus. On the other hand there are many other
sophisticated constructions, see [10], [14], [2], [3], [1], [11].

The main result of this paper is to show that under certain conditions
a 1-domination between two knot exteriors corresponds to finitely many de-
satellizations.

Given a knot k we define its Gromov volume as the Gromov volume ||E(k)|| of
its exterior E(k): up to some constant it is equal to the sum of the volume of the
hyperbolic pieces of the JSJ-decomposition of E(k), see [6], [17].

Theorem 1.1. Suppose that any companion of k is prime. If k 1-dominates a knot
k′ with the same Gromov volume, then k′ can be obtained from k by finitely many
de-satellizations.

The condition that the knots k and k′ have “the same Gromov volume” clearly
cannot be removed, according to the constructions in the papers mentioned above.
We will also give a new construction of 1-domination between knots with same
Gromov volume to show that the condition “any companion of k is prime” cannot
be removed.

The corollary below supports a general opinion that the 1-domination partial
order reflects the complexity of knots (see the survey [21]). By results of Schubert
[15], see also [16], the bridge number strictly decreases by de-satellization. This fol-
lows from the fact that one can isotope any companion solid torus V0 of a satellite
knot k to be taut (in the sense of [16]) with respect to any minimal bridge presen-
tation of k. Hence the bridge number of k is equal to wb(k0) + β(V, k′), where w is
the wrapping number of k in the solid torus V0, b(k0) is the bridge number of the
companion knot k0 and β(V, k′) is the number of maxima which do not correspond
to maxima of k0 (i.e. saddles of ∂V0 ).

Since k0 is knotted, b(k) > 2w + β(V, k′) ≥ b(k′). So we obtain the following
corollary:

Corollary 1.1. Suppose that any companion of k is prime. If k > k′ with the same
Gromov volume, then b(k) > b(k′), where b is the bridge number.

The paper is organized as follows. After listing some known useful facts, a general
study of maps between Seifert pieces and graph pieces in knot complements is given
in §2, Theorem 1.1 will be proved in §3, and the new construction of 1-domination
will be given in §4. Below we will fix some notions for the remaining sections.
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Notation 1.1. On the boundary of each solid torus in S3, we specify its longitude
to be the one which is homologous to zero in the complement. Let k1 be a geomet-
rically essential knot [12, p110] in an unknotted solid torus V ⊂ S3 and let k be
another knot. Let h : V → N(k) be a longitude preserving homeomorphism, then
the new knot k2 = h(k1) is called a satellite knot of k, and k is a companion of k2.

The reversing process of satellization, given by pinching E(k), the exterior of the
companion to a solid torus, produces a proper degree one map f : E(k2) → E(k1),
which will be called a de-satellization. Hence K2 ≥ K1.

Notation 1.2. Let T (p1, q1; p2, q2; . . . ; pn, qn) be the iterated torus knot, which is
the (p1, q1)–cable of the (p2, q2)–cable of . . . the (pn, qn)–torus knot. (When we say
“(p, q)–cable”, p denotes the winding number.) The exterior of this knot is denoted
by E = E(p1, q1; p2, q2; . . . ; pn, qn).

Let C = C(p1, q1; p2, q2; . . . ; pn, qn) denote the iterated cable space, that is the
exterior E of T (p1, q1; p2, q2; . . . ; pn, qn) with an open neighborhood of the singular
fiber corresponding to (pn, qn) removed.

The space E is a graph manifold whose Seifert pieces are the cable spaces
C(p1, q1), . . . ,C(pn−1, qn−1) and the torus knot exterior E(pn, qn). The boundary
∂E = T0, and the JSJ tori of E are denoted by T1, . . . , Tn−1, where ∂C(pi, qi) =
Ti−1 � Ti.

The iterated cable space C is also a graph manifold whose Seifert pieces are the
cable spaces C(p1, q1),. . . ,C(pn, qn). The boundary ∂C = T0 � Tn, and the JSJ tori
are denoted by T1, . . . , Tn−1, where ∂C(pi, qi) = Ti−1 � Ti. Suppose α is a slope on
Tn, then C(α) = C(p1, q1; . . . ; pn, qn; α) denotes the manifold obtained from C by
Dehn filling along α.

The spaces E and C are submanifolds of S3 and each torus Ti bounds a solid
torus Ki in S3. We denote by µi ⊂ Ti the meridian of Ki, and by λi ⊂ Ti the
longitude of Ki.

Notation 1.3. Suppose F (resp. P ) is a properly embedded (n−1)-manifold (resp.
an embedded n-manifold) in a n-manifold M . We use M \F (resp. M \P ) to denote
the resulting manifold obtained by splitting M along F (resp. removing intP , the
interior of P ).

Notation 1.4. Let D0 be a disc and D1, ..., Dn be sub-discs in the interior of D0.
For i = 0, 1, . . . , n denote ∂Di by ci, and the n-punctured disc D0 \ ∪n

i=1Di by Pn.
Then ∂Pn = ∪n

i=0ci. Note that P1 is an annulus. Once D0 is oriented, then Pn and
all the curves ci are oriented.

For n ≥ 2, we call n-composite space a manifold homeomorphic to the product
S1 × Pn. The property that any companion of the knot k is prime is equivalent to
the fact that no JSJ piece of E(k) is a composite space.

Notation 1.5. Let f : M → N be a map between two orientable compact con-
nected n–manifolds. We say that f is proper if f−1(∂N) = ∂M . We say that f is
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allowable if f is proper and the degree of all possible restrictions f | : F → S have
the same sign, where F is a component of ∂M and S is a component of ∂N .

2. Proper Maps Between Seifert Pieces and Graph Pieces in Knot
Complements

The following four known facts, see [4], [8], [13] and [18] respectively, will be repeatly
used in this paper.

Lemma 2.1. [4] In H1(C(pi, qi); Z), the following relations holds:

pi[µi−1] = [µi], [λi−1] = pi[λi].

Moreover the regular Seifert fiber of C(pi, qi) is homologous to piqi[µi−1] + [λi−1]
on Ti−1, and homologous to qi[µi] + pi[λi] on Ti.

Lemma 2.2. [8] Let P be a Seifert piece of the JSJ decomposition of E(k). Then
P is either a torus knot exterior E(p, q), or a cable space C(p, q), or a composite
space Pm × S1. Moreover a composite space Pm × S1, m > 1 appears if and only if
some companion of k is not prime.

Lemma 2.3. [13] Let f : M → N be an allowable degree 1 map between aspherical
Seifert manifolds. Then f is homotopic to a fiber preserving pinch.

For a compact orientable 3-manifold M with boundary a collection of tori, H(M)
denotes the disjoint union of the hyperbolic JSJ pieces of M , and ||M || = ||H(M)||
is the Gromov volume of M .

Lemma 2.4. [18] Let f : M → N be a proper map of degree d between two Haken
3-manifolds. If the relation ||M || = d||N || holds between their Gromov volumes,
then f can be homotoped to send the hyperbolic pieces H(M) to the hyperbolic
pieces H(N) by a covering map.

Below we prove some general results about maps between Seifert pieces and
graph pieces in knot complements.

Lemma 2.5. Any proper degree 1 map f : E(p, q) → E(p′, q′) between torus knot
complements is homotopic to a homeomorphism.

Proof. The lemma follows from the fact that torus knots are minimal (see [2]).
It is also a direct corollary of [13]: each manifold involved has only one boundary
component, hence f is an allowable degree 1 map. Since each Seifert manifold
involved has a unique Seifert fibration, then by [13], f is homotopic to a fiber
preserving pinch. Any non-trivial pinch will decrease either the genus of the base,
or the number of singular fibers, and since both the genus of the base and the
number of singular fibers of E(p, q) and E(p′, q′) are the same, the pinch must be
trivial, therefore the lemma is verified.
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Lemma 2.6. Suppose M is a Seifert manifold with a π1–injective boundary com-
ponent T and f : C(p1, q1) → M is a proper map such that f | : T0 → T is a
homeomorphism. Let t1 ∈ π1(C(p1, q1)) and t ∈ π1(M) represent regular fibers of
the corresponding Seifert manifolds. Then the following statements hold.

(1) f∗(π1(C(p1, q1))) is not an abelian group;
(2) f∗(t1) = t±1 if M has a unique Seifert fibration.

Proof. Pick a base point of C(p1, q1) in T0, and a base point of M in T . Then
π1(T0) is naturally a subgroup of π1(C(p1, q1)), and π1(T ) is naturally a subgroup
of π1(M).

Assume f∗(π1(C(p1, q1))) is an abelian group. Since f |T0 is a homeomor-
phism, and π1(T ) is a maximal abelian subgroup of π1(M), see [9, Chap. VI],
f∗(π1(C(p1, q1))) must be equal to π1(T ). Moreover,

f∗ : π1(C(p1, q1)) → π1(T )

factors through H1(C(p1, q1); Z). The longitutes λ0, λ1 represent elements in
π1(C(p1, q1)) and λ0 is a primitive element in π1(T0), hence f∗(λ0) is a primitive
element in π1(T ). Since λ0 is the p1–multiple of λ1 in H1(C(p1, q1)) with p1 > 1,
we get a contradicition.

Since t1 commutes with π1(C(p1, q1)), and f∗(π1(C(p1, q1))) is non-abelian,
f∗(t1) must be a power of t. Moreover f∗(t1) = t±1 because f : T0 → T is a
homeomorphism.

Lemma 2.7. Let

f : C(α) = C(p1, q1; . . . ; pn, qn; α) → E(p, q)

be a proper map such that the restriction of f to T0 is a homeomorphism. Then the
restriction of f to T1 is not π1–injective.

Proof. Pick a basepoint b of C(α), b ∈ T0, choose a simple curve γ connecting b

to Tn−1, such that γ ∩ Ti consists of a single point. Let γ ∩ Ti be the base point in
Ti and E(pi+1, qi+1). Using a path on γ, we can view π1(Ti) and π1(E(pi+1, qi+1))
as subgroups of π1(C(α)). Let f∗ : π1(C(α)) → π1(E(p, q)) be the induced homo-
morphism on the fundamental groups.Let T ′

0 = ∂E(p, q).
Let ti ⊂ π1(C(pi, qi)) and t ⊂ π1(E(p, q)) represent the regular Seifert fibers in

the corresponding Seifert manifolds. By Lemma 2.6, we can assume f∗(t1) = t.
If n = 1, then the conclusion trivially holds (since α is in the kernel), so we may

assume n > 1. The element t1 is contained in π1(T1). In fact, t1 is homologous to
q1[µ1] + p1[λ1] in T1. Let x denote f∗(µ1). Looking for a contradiction, we assume
that the restriction of f on T1 is π1–injective. Then x, t generate a Z⊕Z–subgroup
of π1(E(p, q)).

The fiber t2 is homologous to p2q2[µ1] + [λ1] on T1, hence it is not a power of
t1 in π1(T1). So f∗(t2) is not a power of t in π1(E(p, q)). But t2 commutes with
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π1(C(p2, q2)), so f∗(π1(C(p2, q2))) is in the centralizer of f∗(t2). Since f∗(t2) is not
a power of the fiber t in the knot group π1(E(p, q)), its centralizer must be an
abelian group, see [9, Chap. VI]. Hence

f∗ : π1(C(p2, q2)) → π1(E(p, q))

factors through H1(C(p2, q2); Z).
In C(p2, q2), p2(q1[µ1] + p1[λ1]) is homologous to q1[µ2] + p1p

2
2[λ2], hence the

corresponding element in π1(T2) is mapped by f∗ to tp2 . By the same reason,
f∗(µ2) = xp2 . So f |T2 is π1–injective. Moreover, t3 is homologous to p3q3[µ2] + [λ2]
in T2, it is linearly independent with q1[µ2] + p1p

2
2[λ2], since gcd(p1, q1) = 1. Hence

f∗(t3) is not a power of t in π1(E(p, q)). But t3 commutes with π1(C(p3, q3)), so
f∗(π1(C(p3, q3))) is an abelian group.

By the same arguments as above, we find that f∗(µ3) = xp2p3 , and the loop
corresponding to q1[µ3] + p1p

2
2p

2
3[λ3] on T3 is mapped to tp2p3 by f∗. Hence f |T3 is

π1–injective, and f∗(t4) is not a power of t in π1(E(p, q)).
Go on with such arguments, we finally show that f |Tn−1 is π1–injective, and

f∗(tn) is not a power of t, where tn represents the regular fiber of C(pn, qn). Thus
f∗(π1(C(pn, qn))) is an abelian group, and therefore the group f∗(π1(C(pn, qn; α)))
is also abelian. Then f∗|π1(C(pn, qn; α)) factors through H1(C(pn, qn, α); Z) ∼=
Z ⊕ Zb for some positive integer b, which contradicts the fact that f |Tn−1 is π1–
injective.

Lemma 2.8. Let C(p, q) be a cable-space with ∂C(p, q) = T ′
0 � T ′

1, where T ′
0 corre-

sponds to the boundary of an open neighborhood of the singular fiber of type (p, q)
removed from the torus knot exterior E(p, q). Let

f : C(p1, q1; . . . ; pn, qn) → C(p, q)

be a proper map.
(1) If n > 1, then f cannot map T0 homeomorphically to T ′

0.
(2) If n = 1, and f maps T0 homeomorphically to T ′

0, then f is homotopic to a
homeomorphism.

Proof. Assume f maps T0 homeomorphically to T ′
0. We claim that f(Tn) = T ′

1.
Otherwise f(Tn) = T ′

0. Let f# be the induced map on homology, then f#([λn]) is
an integral linear combination of f#([µ0]) and f#([λ0]). Since [λn] is equal to 1

p [λ0],
where p = p1p2 . . . pn, we get a contradiction.

Now f(Tn) = T ′
1. Since f |T0 is a homeomorphism, deg f = deg f |T0 = 1 =

deg f |Tn. Thus we can homotope f so that f |Tn is a homeomorphism. Moreover:

f∗ : π1(C(p1, q1; . . . ; pn, qn)) → π1(C(p, q))

is an epimorphism. Hence f∗(π1(C(p1, q1; . . . ; pn, qn)) is not abelian.
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f# : H1(C(p1, q1; . . . ; pn, qn); Z) → H1(C(p, q); Z)

is an isomorphism.
By the proof of Lemma 2.6, we can assume that f∗(t1) = f∗(tn) = t in π1(C(p, q).

In H1(C(p1, q1; . . . ; pn, qn); Z), we have

[t1] = p1q1[µ0] + [λ0] = p1q1[µ0] + p[λn],

and [tn] = qn[µn] + pn[λn] = qnp[µ0] + pn[λn].

Since f# is an isomorphism and [µ0], [λn] generate H1(C(p1, q1; . . . ; pn, qn); Z), we
must have p1q1 = qnp and p = pn.

If n > 1, it is impossible since p1 > 1.
If n = 1, then we have a proper allowable degree map f : C(p1, q1) → C(p, q).

Applying Rong’s result as in the proof of Lemma 2.5, one shows that f is homotopic
to a homeomorphism.

Lemma 2.9. Let M be either E(p1, q1; . . . ; pn, qn) or C(p1, q1; . . . ; pn, qn), and let
Pm denotes the punctured disk with m ≥ 1 holes. Then there is no proper map
f : M → Pm × S1 such that the restriction of f to a component of ∂M is a home-
omorphism.

Proof. Assume f maps T0 homeomorphically to T ′
0, a component of ∂Pm × S1.

If M is a knot space, then [T ′
0] = f#([T0]) is null homologous in Pm ×S1, which

implies m = 0, a contradiction.
Now suppose that M is an iterated cable space with boundary T0 and Tn. Since

[λ0] = p[λn] in H1(M ; Z), where p = p1...pn > 1, we have f#([λ0]) = pf#([λn]) in
H1(Pm × S1; Z) = Z

m+1. There are two subcases:
(a) f#([Tn]) = k[T ′

0], k ∈ Z;
(b) f#([Tn]) = k[T ′

1], k ∈ Z, T ′
1 �= T ′

0, T ′
1 is a component of ∂Pm × S1.

In the subcase (a), since [T0] + [Tn] = 0, we have (k + 1)[T ′
0] = 0, which implies

that k = −1. Now both f#([λ0]) and f#([λn]) are homologous to closed curves
on T ′

0, and in particular f#([λ0]) is a primitive element in H1(T ′
0; Z) = Z

2. Note
that f#([λ0]) = pf#([λn]) in H1(Pm ×S1; Z), and the homomorphism H1(T ′

0; Z) →
H1(Pm × S1; Z) induced by the inclusion is injective, so f#([λ0]) = pf#([λn]) in
H1(T ′

0; Z), which is impossible since f#([λ0]) is primitive.
In the subcase (b), since [T0] + [Tn] = 0, we have [T ′

0] + [T ′
1] = 0, which is

impossible if m > 1. If m = 1, then P1 × S1 = T ′
0 × [0, 1], and the homomorphism

H1(T ′
0; Z) → H1(T ′

0 × [0, 1]; Z) induced by the inclusion is an isomorphism. Again
f#([λ0]) = pf#([λn]) in H1(P1 × S1; Z), which is impossible.

In either case we reach a contradiction.
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3. Proof of Theorem 1.1

The dual graph Γ(k) to the JSJ decomposition of E(k) is a rooted tree, where
the root is corresponding to the unique vertex manifold containing ∂E(k). Let
Γ0 ⊂ Γ(k) be the maximal connected subtree which contains the root such that
the restriction of f , up to homotopy, to the connected submanifold M(Γ0) ⊂ E(k)
associated to Γ0 is a homeomorphism onto its image. Moreover the restriction of f

to each leaf torus of Γ0 is π1-injective.
Since k and k′ have the same Gromov volume, by [18], f can be homotoped

so that f maps the hyperbolic pieces of E(k) homeomorphically to the hyperbolic
pieces of E(k′).

If f : E(k) → E(k′) is homotopic to a homeomorphism, then Theorem 1.1 is
automatically true. So from now we assume that f is not homotopic to a homeo-
morphism. Thus M(Γ0) �= E(k).

Let T0 be the torus corresponding to a leaf of Γ0, and let X0 be the JSJ piece
of E(k) \ M(Γ0) adjacent to T0. Then by [18] X0 must be a Seifert piece. Since
f |T0 is π1–injective, f |X0 is non-degenerate, and it follows that we can push f(X0)
into a Seifert piece X ′

0 of the JSJ decomposition of E(k′). Let T ′
0 = f(T0), then

f | : T0 → T ′
0 is a homeomorphism. By the definition of Γ0, we have a JSJ piece

X �= X0 of E(k) adjacent to T0 such that f | : X → X ′ is a homeomorphism, where
X ′ is a JSJ piece of E(k′) adjacent to T ′

0. Hence T ′
0 ⊂ ∂X ′

0.
Let U be the maximal connected graph submanifold of E(k) such that X0 ⊂ U

and T0 ⊂ ∂U . Since we assume that any companion of k is prime, then U is
homeomorphic to either an iterated torus knot exterior E(p1, q1; . . . ; pn, qn) or an
iterated cable knot exterior C(p1, q1; . . . ; pn, qn).

Lemma 3.1. U cannot be a torus knot exterior E(p1, q1). Hence T1 �= ∅.

Proof. Otherwise we have U = X0 = E(p1, q1) and then f(T0) = T ′
0 is homologous

to zero in X ′
0, which implies ∂X ′

0 = T ′
0 and therefore X ′

0 = E(p′, q′). Then we have
map f | : E(p, q) → E(p′, q′) which is degree 1 on the boundary, and therefore
degree 1 itself. By Lemma 2.5, f | is homotopic to a homeomorphism, and therefore
contradicts the maximality of Γ0.

According to the notation 1.2, starting from T0, we name the JSJ tori in U

T1, T2, ..., Tn following the order on the JSJ segment.

Lemma 3.2. f |Ti is not π1–injective for some i.

Proof. Otherwise the restriction of f to any Seifert piece in U is non-degenerate.
By homotoping f , we can assume that f−1(X ′

0) ∩ U is the union of some Seifert
pieces in E(k).

Let G be a component of f−1(X ′
0) containing X0. Then G is either

E(p1, q1; . . . ; pl, ql) or C(p1, q1; . . . ; pl, ql).
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Claim 1. X ′
0 = E(p′, q′), and X ′ �= X ′

0.

Proof. By Lemma 2.9, X ′
0 is not Pm × S1, m ≥ 1. Hence either X ′

0 = C(p′, q′) is
a cable space or X ′

0 = E(p′, q′) is a torus knot exterior.
Suppose first that X ′

0 = C(p′, q′). A simple homological reason shows that
G cannot be E(p1, q1; . . . ; pl, ql). By Lemma 2.8, G cannot be C(p1, q1; . . . ; pl, ql),
l > 1; moreover if G = C(p1, q1), then f | : C(p1, q1) → C(p′, q′) is homotopic to a
homeomorphism, which contradicts the maximality of Γ0.

Hence X ′
0 = E(p′, q′). Since X ′, which is homeomorphic to X , has at least two

boundary components, we have X ′
0 �= X ′.

Claim 2. f−1(X ′
0) ∩ U = U .

Proof. Let S′ be a Seifert surface of E(p′, q′). Since f | : T0 → T ′
0 is a homeomor-

phism, up to a homotopy relative to T0, we may assume that f−1(S′) is incompress-
ible, and that there is only one component of f−1(S′), denoted by S, with ∂S a sim-
ple loop c on T0. Since f(X) = X ′ and X ′ �= X ′

0, it follows that f−1(S′)∩intX = ∅.
Since T0 is separating and S is connected, one must have S ⊂ E(k0). Hence c = λ0,
where E(k0) is the companion exterior bounded by T0 and containing U . Since the
winding number of each JSJ torus Ti in U is non-zero with respect to T0, we have
S ∩ Ti �= ∅ for each i, and it follows that f−1(X ′

0) ∩ U = U .

Claim 3. U = E(p1, q1; . . . ; pn, qn).

Proof. Let us assume that U = C(p1, q1; . . . ; pn, qn). Let Y be the JSJ piece of
E(k) \ U adjacent to Tn. By the definition of U , Y must be a hyperbolic piece,
so f |Y must be a homeomorphism. Since f(Tn) ⊂ T ′

0, we must have f(Y ) ⊂ X ′

which implies that X ′ is a hyperbolic piece. Since f : X → X ′ is a homeomorphism
by our assumption, it follows that X is a hyperbolic piece. Therefore f send two
different hyperbolic JSJ pieces of E(k) to a single hyperbolic JSJ piece of E(k′).
This contradicts the fact that the restriction of f to the hyperbolic part is a home-
omorphism.

Now we have a proper map f : E(p1, q1; . . . ; pn, qn) → E(p′, q′) which is a home-
omorphism on the boundary. By Lemma 2.7, its restriction f |T1 is not π1–injective,
which contradicts the assumption that we made at the beginning of the proof .

This finishes the proof of Lemma 3.2.

Lemma 3.3. f |T1 is not π1–injective.

Proof. By Lemma 3.2, some f |Ti is not π1–injective for some Ti in U . We may
assume that the restriction of f is π1–injective on Ti for i < k and that the restric-
tion of f is not π1–injective on Tk. We have f(C(p1, q1; ...; pk, qk)) ⊂ X ′

0. Since f |Tk

is not π1–injective, there is a simple loop α ⊂ Tk in the kernel of f∗. Therefore f
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extends to a proper map f̄ : C(p1, q1; ...; pk, qk; α) → X ′
0 such that f̄ |T0 is a homeo-

morphism. Then a homological argument shows that X ′
0 = E(p, q). By Lemma 2.7

f̄ |T1 = f |T1 is not π1–injective.

Proof of Theorem 1.1. Let V = M(Γ0), V ′ = f(V ). Then f | : V → V ′ is a
homeomorphism. Denote the knot complement separated by Ti in E(k) by E(ki),
i = 0, 1 and W = E(k) \ E(k0). Then we have E(k0) = C(p1, q1) ∪T1 E(k1) and
there is a proper degree one map

f : E(k) = W ∪T0 C(p1, q1) ∪T1 E(k1) → E(k′)

such that f(C(p1, q1)) ⊂ X ′
0, f | : T0 → T ′

0 is a homeomorphism, and a simple
closed curve α ⊂ T1 lies in the kernel of f |T1. Then the proper degree one map
f : E(k) → E(k′) induces a factorization

(1) E(k) −→ W ∪T0 C(p1, q1; α) ∪α∗ E(k1, α)
f̂−→ E(k′).

Here C(p1, q1; α) and E(k1, α) are 3–manifolds obtained by Dehn filling C(p1, q1)
and E(k1) respectively along the simple curve α ⊂ T1, and C(p1, q1; α)∪α∗ E(k1, α)
is obtained by identifying the core α∗ of the filling solid tori in C(p1, q1; α) and
E(k1, α).

Since E(k1, α) is a closed 3–manifold, it makes no contribution to the degree of
the proper degree one map f and thus

(2) f̂ | : W ∪T0 C(p1, q1; α) → E(k′)

is a proper degree one map.
Since

||E(k′)|| = ||E(k)|| ≥ ||W ∪T0 C(p1, q1)|| ≥ ||W ∪T0 C(p1, q1; α)|| ≥ ||E(k′)||,
we have ||E(k)|| = ||W ∪T0 C(p1, q1)|| = ||W ∪T0 C(p1, q1)|| + ||E(k1)||. Therefore
||E(k1)|| = 0 and E(k1) is an iterated torus knot exterior E(p2, q2; ...; pn, qn), since
it is a graph manifold in S3 without any composite space as JSJ piece. It follows
that

(3) C(p1, q1) ∪T1 E(k1) = C(p1, q1) ∪T1 E(p2, q2; ...; pn, qn)

and thus C(p1, q1) ∪T1 E(p2, q2; ...; pn, qn) = E(p1, q1; ...; pn, qn).
Moreover f̂(C(p1, q1; α)) ⊂ X ′

0 and f | : T0 → T ′
0 is a homeomorphism, hence it

follows that X ′
0 = E(p′, q′) and

(4) f̂ | : C(p1, q1; α) → E(p′, q′)

is homotopic to a homeomorphism. Finally we have

(5) f : W ∪T0 C(p1, q1) ∪T1 E(p2, q2; ...; pn, qn) → E(k′) = W ′ ∪T ′
0
E(p′, q′).

Let S′ be a Seifert surface of E(p′, q′), then up to a homotopy relative to T0, we
may assume that f−1(S′) is incompressible, and that there is only one component
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of f−1(S′), denoted by S, with ∂S a simple closed curve on T0 . Let X be a JSJ
piece of E(k) adjacent to X0 along T0, and let X ′ be a JSJ piece of E(k′) adjacent
to X ′

0 along T ′
0. By our choice of T0, f |X is a homeomorphism. Since X has at least

two boundary components while X ′
0 = E(p′, q′) has only one boundary component,

we must have f(X) ⊂ X ′ and therefore f−1(S′)∩ intX = ∅. Since T0 is separating
and S is connected, we must have S ⊂ E(p1, q1; p2, q2; ...; pn, qn) and therefore it is
a Seifert surface of E(p1, q1; p2, q2; ...; pn, qn) which intersects T1 in parallel copies
of λ1. It follows that α = λ1. Now we rewrite (1) as

(6) E(k) −→ V ∪T0 C(p1, q1; λ1) ∪λ∗
1

E(k1, λ1)
f̂−→ W ′ ∪T ′

0
E(p′, q′).

Note that the core λ∗
1 of the filling solid torus is a retractor of E(k1, λ1), and

f̂ | : C(p1, q1; λ1) → E(p′, q′) is homotopic to a homeomorphism by [13]. Hence we
have a further factorization

E(k) → W ∪T0 C(p1, q1; λ1) ∪λ∗
1

E(k1, λ1)

→ W ∪T0 C(p1, q1; λ1) = W ∪T0 E(p′, q′) → W ′ ∪T ′
0
E(p′, q′).

Therefore f factors through the de-satellization:

E(k) → W ∪T0 E(p′, q′) → E(k′).

Clearly W ∪T0 E(p′, q′) = E(k′′) for some knot k′′ in S3. Moreover any com-
panion of k′′ is prime, and k′′ has the same Gromov volume as k′. So we can apply
the above process to the induced degree one map E(k′′) → E(k′). Since by [19]
any knot admits at most finitely many de-satellization, the process must stop after
finitely many steps. This finishes the proof of Theorem 1.1.

4. New Construction

Example 4.1. We construct a degree one map from a graph knot (i.e., the comple-
ment of the knot is a graph manifold) to a torus knot which is not a de-satellization.

Below ci and Pn are given in Notation 1.4. We use T̄ (3, 2) to denote the mirror
image of T (3, 2) and Ē(3, 2) to donote the exterior of T̄ (3, 2).

Lemma 4.1 (Schubert). The JSJ decomposition pieces of E(k1#...#kn) are
E(k1), ..., E(kn) and Pn × S1, moreover E(k1#...#kn) is obtained by identifying
∂E(ki) and ci × S1 such that the meridian mi of E(ki) is identified with xi × S1,
where xi is a point in ci, i = 1, ..., n.

To construct our example, we need first to orient knot exteriors and their merid-
ians and Seifert fibers and to take a careful look at Lemma 4.1.

The orientation of each knot exterior below is induced from the 3-sphere with
fixed orientation; the torus boundary of each knot exterior has induced orientation;
on each torus boundary, the meridian and the Seifert fiber are oriented so that their
product gives the orientation of the torus.
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Suppose the meridian and the Seifert fiber of E(3, 2) have been oriented.

Lemma 4.2. (i) The meridian and the Seifert fiber of E(3p, 2) can be oriented so
that there is a proper map

πp : E(3p, 2) → E(3, 2)

of degree p for any odd p which sends the Seifert fiber of E(3p, 2) to the p times of
Seifert fiber of E(3, 2) and send the meridian to the meridian.

(ii) The meridian and the Seifert fiber of Ē(3, 2) can be oriented so that there
is a proper degree −1 map

π̄ : Ē(3, 2) → E(3, 2)

which send the meridian to the meridian and reverses the direction of the Seifert
fiber.

Proof. (i) Let A be a cyclic group of order p acts freely along the regular Seifert
fiber on E(3p, 2) which induces the identity on the base space. One can verify
directly that the quotient E(3p, 2)/A = E(3, 2) for odd p. Moreover if we lift the
orientations of the meridian and the Seifert fiber of E(3p, 2) to those of E(3p, 2),
then the quotient map πp : E(3p, 2) → E(3, 2) meets all the conditions.

(ii) By the definition there is a proper degree −1 map

r : Ē(3, 2) → E(3, 2)

induced by the mirror reflection. Now orient the meridian and the Seifert fiber of
Ē(3, 2) so that r reverses the direction of meridian and preserves the oriented Seifert
fiber. Since the trefoil knot is strongly invertible, there is an orientation preserving
involution τ which reverses both the directions of the Seifert fiber and the meridian
on ∂E(3, 2). Then the composition π̄ = τ ◦ r meets all the conditions.

In the next lemma, Pn’s are oriented and ∂Pn’s have induced orientations. The
proof of the lemma is very direct.

Lemma 4.3. Let d1, ..., dn be integers such that
∑

di = 1. There is a proper
degree one map h(d1, ..., dn) : (Pn, c0,∪n

i=1ci) → (P1, c0, c1) such that the restric-
tion h| : c0 → c0 is of degree 1 and h| : ci → c1 is of degree di.

Now we are going to construct a degree one map

f : E(T (9, 2)#T̄ (3, 2)#T̄ (3, 2)) → E(3, 2)

which we call “folding”. To define the map, we need to present the domain and the
target as follows:

f : (P3 × S1) ∪φi �3
i=1Ei → (P1 × S1) ∪φ E(3, 2)

where E1 = E(9, 2), E2 = Ē(3, 2), E3 = Ē(3, 2), and take a careful look at φi and φ.
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First all the meridians and the Seifert fibers of Ei, i = 1, 2, 3, are oriented as in
Lemma 4.2 and all ci are oriented as in Lemma 4.3, and S1 is also oriented.

Now each φi exactly sends the meridian of Ei to xi ×S1. Moreover the product
structure of P3 ×S1 can be chosen so that φi sends the Seifert fiber of Ei to ci × y,
which is possible since the Seifert fiber and the meridian of Ei meets transversally
in one point. The product structure of P1 × S1 is also chosen so that φ has similar
property.

Now our map f is obtained by gluing the following proper maps:
(1) h(3,−1,−1) × id : P3 × S1 → P1 × S1, where h(3,−1,−1) is defined in

Lemma 4.3;
(2) π3 : E1 → E(3, 2), where π3 is given by Lemma 4.2 (i);
(3) π̄ : Ei → E(3, 2), where π̄ is given by Lemma 4.2 (ii), i = 2, 3.
Clearly f is a proper map of degree one.
Finally we show that the map f is not a de-satellization. Otherwise there would

be an essential embedded torus T such that there is a non-trivial simple closed
curve c which stays in the kernel of f∗. Since all Ei involved are small knot exteriors,
T ⊂ E(k) must be a vertical torus in P3 × S1, which separates P3 × S1 into two
copies of P2 × S1. We may suppose that c1 and c2 are in the same P2 × S1. Note
that f sends (S1, c1, c2) of P2 × S1 to (S1, 3c1, −c1) of P1 × S1, and c1 and S1

form a basis for π1(P1 × S1), one can verify directly that there is no non-trivial
simple closed curve on T which stays in the kernel of f | : T → P1 × S1. Since
P1 × S1 is π1-injective in E(3, 2), so there is no non-trivial simple closed curve on
T which stays in the kernel of f | : T → E(3, 2), and we reach a contradiction. The
verification of the cases that other ci and cj are in the same P2 × S1 is similar.
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[15] H. Schubert, Über eine numerische Knoteninvariante (German), Math. Z. 61 (1954)

245–288.
[16] J. Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos.

Soc. 135 (2003) 539–544.
[17] T. Soma, The Gromov invariant of links, Invent. Math. 64 (1981) 445–454.
[18] T. Soma, A rigidity theorem for Haken manifolds, Math. Proc. Cambridge Philos.

Soc. 118 (1995) 141–160.
[19] T. Soma, On preimage knots in S3, Proc. Amer. Math. Soc. 100 (1987) 589–592.
[20] F. Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math.

(2) 87 (1968) 56–88.
[21] S. C. Wang, Non-zero degree maps between 3–manifolds, Proceedings of the Interna-

tional Congress of Mathematicians (Beijing, 2002), Vol. II (Higher Ed. Press, Beijing,
2002), pp. 457–468.


