346 research outputs found

    Observable Electron EDM and Leptogenesis

    Get PDF
    In the context of the minimal supersymmetric seesaw model, the CP-violating neutrino Yukawa couplings might induce an electron EDM. The same interactions may also be responsible for the generation of the observed baryon asymmetry of the Universe via leptogenesis. We identify in a model-independent way those patterns within the seesaw models which predict an electron EDM at a level probed by planned laboratory experiments and show that negative searches on \tau-> e \gamma decay may provide the strongest upper bound on the electron EDM. We also conclude that a possible future detection of the electron EDM is incompatible with thermal leptogenesis, even when flavour effects are accounted for.Comment: 26 pages, 6 figure

    Low energy effects of neutrino masses

    Full text link
    While all models of Majorana neutrino masses lead to the same dimension five effective operator, which does not conserve lepton number, the dimension six operators induced at low energies conserve lepton number and differ depending on the high energy model of new physics. We derive the low-energy dimension six operators which are characteristic of generic Seesaw models, in which neutrino masses result from the exchange of heavy fields which may be either fermionic singlets, fermionic triplets or scalar triplets. The resulting operators may lead to effects observable in the near future, if the coefficients of the dimension five and six operators are decoupled along a certain pattern, which turns out to be common to all models. The phenomenological consequences are explored as well, including their contributions to μeγ\mu \to e \gamma and new bounds on the Yukawa couplings for each model.Comment: modifications: couplings in appendix B, formulas (121)-(122) on rare leptons decays (to match with published version) and consequently bounds in table

    Chiral Fluid Dynamics and Collapse of Vacuum Bubbles

    Get PDF
    We study the expansion dynamics of a quark-antiquark plasma droplet from an initial state with restored chiral symmetry. The calculations are made within the linear σ\sigma model scaled with an additional scalar field representing the gluon condensate. We solve numerically the classical equations of motion for the meson fields coupled to the fluid-dynamical equations for the plasma. Strong space-time oscillations of the meson fields are observed in the course of the chiral transition. A new phenomenon, the formation and collapse of vacuum bubbles, is also predicted. The particle production due to the bremsstrahlung of the meson fields is estimated.Comment: 12 pages Revtex,5 figures, Figures modified, minor changes in text. To be published in Phys. Rev. Let

    Finite Temperature Correlators in the Schwinger Model

    Full text link
    We discuss the correlation function of hadronic currents in the Schwinger model at finite temperature TT. We explicitly construct the retarded correlator in real time and obtain analytical results for the Euclidean correlator on a torus. Both constructions lead to the same finite temperature spectral function. The spatial screening lengths in the mesonic channels are related to the dynamical meson mass m=e/πm=e/\sqrt{\pi} and not 2πT2\pi T even in the infinite temperature limit. The relevance of our results for the finite temperature problem in four dimensions is discussed.Comment: in LATEX, 30 pages; two figures available on request from the authors; USITP-93-19, SUNY-NTG-43, (explanations to the figures have been clarified

    Comment on ``Relativistic kinetic equations for electromagnetic, scalar and pseudoscalar interactions''

    Get PDF
    It is found that the extra quantum constraints to the spinor components of the equal-time Wigner function given in a recent paper by Zhuang and Heinz should vanish identically. We point out here the origin of the error and give an interpretation of the result. However, the principal idea of obtaining a complete equal-time transport theory by energy averaging the covariant theory remains valid. The classical transport equation for the spin density is also found to be incorrect. We give here the correct form of that equation and discuss briefly its structure.Comment: 5 pages LaTe

    Renormalization group evolution of neutrino masses and mixing in seesaw models: A review

    Full text link
    We consider different extensions of the standard model which can give rise to the small active neutrino masses through seesaw mechanisms, and their mixing. These tiny neutrino masses are generated at some high energy scale by the heavy seesaw fields which then get sequentially decoupled to give an effective dimension-5 operator. The renormalization group evolution of the masses and the mixing parameters of the three active neutrinos in the high energy as well as the low energy effective theory is reviewed in this article.Comment: 54 pages. Invited review submitted to IJMP
    corecore