727 research outputs found
PSR J1453+1902 and the radio luminosities of solitary versus binary millisecond pulsars
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar
discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our
observations show that PSR J1453+1902 is solitary and has a proper motion of
8(2) mas/yr. At the nominal distance of 1.2 kpc estimated from the pulsar's
dispersion measure, this corresponds to a transverse speed of 46(11) km/s,
typical of the millisecond pulsar population. We analyse the current sample of
55 millisecond pulsars in the Galactic disk and revisit the question of whether
the luminosities of isolated millisecond pulsars are different from their
binary counterparts. We demonstrate that the apparent differences in the
luminosity distributions seen in samples selected from 430-MHz surveys can be
explained by small-number statistics and observational selection biases. An
examination of the sample from 1400-MHz surveys shows no differences in the
distributions. The simplest conclusion from the current data is that the spin,
kinematic, spatial and luminosity distributions of isolated and binary
millisecond pulsars are consistent with a single homogeneous population.Comment: 8 pages, 5 figures and 3 tables, accepted for publication by MNRA
Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries
We report results from the initial stage of a long-term pulsar survey of the
Galactic plane using the Arecibo L-band Feed Array (ALFA), a seven-beam
receiver operating at 1.4 GHz with 0.3 GHz bandwidth. The search targets
Galactic latitudes |b| < 5 deg in the longitude ranges 32 deg < l < 77 deg and
168 deg < l < 77 deg. Data discussed here were collected over a 100 MHz
passband centered on 1.42 GHz using a spectrometer that recorded 256 channels
every 64 microsec. In a preliminary, standard period-DM analysis, we have
detected 29 previously known pulsars and discovered 11 new ones. One of these,
with a period of 69 ms and a low characteristic age of 82 kyr, is a plausible
candidate for association with the unidentified EGRET source 3EG J1928+1733.
Another is a non-recycled pulsar in a relativistic binary with orbital period
of 3.98 hr. We also search the data for isolated dispersed pulses, a technique
that yielded discovery of an extremely sporadic radio emitter with a spin
period of 1.2 s. Simulations we have carried out indicate that about 1000 new
pulsars will be found in the ALFA survey. In addition to providing a large
sample for use in population analyses and for probing the magnetoionic
interstellar medium, the survey maximizes the chances of finding rapidly
spinning millisecond pulsars and pulsars in compact binary systems. Our search
algorithms will exploit the multiple data streams from ALFA to discriminate
between radio frequency interference and celestial signals, including pulsars
and possibly new classes of transient radio sources.Comment: 10 pp, 9 figures, accepted by the Astrophysical Journa
VLBI astrometry of PSR J2222-0137: a pulsar distance measured to 0.4% accuracy
The binary pulsar J2222-0137 is an enigmatic system containing a partially
recycled millisecond pulsar and a companion of unknown nature. Whilst the low
eccentricity of the system favors a white dwarf companion, an unusual double
neutron star system is also a possibility, and optical observations will be
able to distinguish between these possibilities. In order to allow the absolute
luminosity (or upper limit) of the companion object to be properly calibrated,
we undertook astrometric observations with the Very Long Baseline Array to
constrain the system distance via a measurement of annual geometric parallax.
With these observations, we measure the parallax of the J2222-0137 system to be
3.742 +0.013 -0.016 milliarcseconds, yielding a distance of 267.3 +1.2 -0.9 pc,
and measure the transverse velocity to be 57.1 +0.3 -0.2 km/s. Fixing these
parameters in the pulsar timing model made it possible to obtain a measurement
of Shapiro delay and hence the system inclination, which shows that the system
is nearly edge-on (sin i = 0.9985 +/- 0.0005). Furthermore, we were able to
detect the orbital motion of J2222-0137 in our VLBI observations and measure
the longitude of ascending node. The VLBI astrometry yields the most accurate
distance obtained for a radio pulsar to date, and is furthermore the most
accurate parallax for any radio source obtained at "low" radio frequencies
(below ~5 GHz, where the ionosphere dominates the error budget). Using the
astrometric results, we show the companion to J2222-0137 will be easily
detectable in deep optical observations if it is a white dwarf. Finally, we
discuss the implications of this measurement for future ultra-high-precision
astrometry, in particular in support of pulsar timing arrays.Comment: 22 pages, 7 figures, accepted for publication in Ap
Discovery of 10 pulsars in an Arecibo drift-scan survey
We present the results of a 430-MHz survey for pulsars conducted during the
upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of
1147 square degrees of sky using a drift-scan technique. We detected 33
pulsars, 10 of which were not known prior to the survey observations. The
highlight of the new discoveries is PSR J0407+1607, which has a spin period of
25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a
low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity
(e = 0.0009) make the binary system an important new addition to the ensemble
of binary pulsars suitable to test for violations of the strong equivalence
principle. We also report on our initially unsuccessful attempts to detect
optically the companion to J0407+1607 which imply that its absolute visual
magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is
an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA
A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124
PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a
relatively massive white dwarf (WD) companion. These properties make it a
member of the intermediate-mass class of binary pulsar (IMBP) systems. We have
been timing this pulsar since its discovery in 2002. Concentrated observations
at the Green Bank Telescope, augmented with data from the Parkes and Nancay
observatories, have allowed us to determine the general relativistic Shapiro
delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11)
and 0.78(4) solar masses (68% confidence), respectively. The low mass of the
pulsar, the high mass of the WD companion, the short orbital period, and the
pulsar spin period may be explained by the system having gone through a
common-envelope phase in its evolution. We argue that selection effects may
contribute to the relatively small number of known IMBPs.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in the
Astrophysical Journa
Coherently Dedispersed Polarimetry of Millisecond Pulsars
We present a large sample of high-precision, coherently-dedispersed
polarization profiles of millisecond pulsars (MSPs) at frequencies between 410
and 1414 MHz. These data include the first polarimetric observations of several
of the pulsars, and the first low-frequency polarization profiles for others.
Our observations support previous suggestions that the pulse shapes and
polarimetry of MSPs are more complex than those of their slower relatives. An
immediate conclusion is that polarimetry-based classification schemes proposed
for young pulsars are of only limited use when applied to millisecond pulsars.Comment: 28 pages, 10 figures. Text matches version that appeared in ApJS.
Full paper with high-resolution figures available at
ftp://ftp.jb.man.ac.uk/pub/psr/papers/msppolpton.ps.g
Pulsars in Globular Clusters with the SKA
Globular clusters are highly efficient radio pulsar factories. These pulsars
can be used as precision probes of the clusters' structure, gas content,
magnetic field, and formation history; some of them are also highly interesting
in their own right because they probe exotic stellar evolution scenarios as
well as the physics of dense matter, accretion, and gravity. Deep searches with
SKA1-MID and SKA1-LOW will plausibly double to triple the known population.
Such searches will only require one to a few tied-array beams, and can be done
during early commissioning of the telescope - before an all-sky pulsar survey
using hundreds to thousands of tied-array beams is feasible. With SKA2 it will
be possible to observe most of the active radio pulsars within a large fraction
of the Galactic globular clusters, an estimated population of 600 - 3700
observable pulsars (those beamed towards us). This rivals the total population
of millisecond pulsars that can be found in the Galactic field; fully
characterizing it will provide the best-possible physical laboratories as well
as a rich dynamical history of the Galactic globular cluster system.Comment: 15 pages, 5 figures, to be published in: "Advancing Astrophysics with
the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04
The characteristics of millisecond pulsar emission: I. Spectra, pulse shapes and the beaming fraction
We have monitored a large sample of millisecond pulsars using the 100-m
Effelsberg radio telescope in order to compare their radio emission properties
to the slowly rotating population. With some notable exceptions, our findings
suggest that the two groups of objects share many common properties. A
comparison of the spectral indices between samples of normal and millisecond
pulsars demonstrates that millisecond pulsar spectra are not significantly
different from those of normal pulsars. There is evidence, however, that
millisecond pulsars are slightly less luminous and less efficient radio
emitters compared to normal pulsars. We confirm recent suggestions that a
diversity exists among the luminosities of millisecond pulsars with the
isolated millisecond pulsars being less luminous than the binary millisecond
pulsars. There are indications that old millisecond pulsars exhibit somewhat
flatter spectra than the presumably younger ones. We present evidence that
millisecond pulsar profiles are only marginally more complex than those found
among the normal pulsar population. Moreover, the development of the profiles
with frequency is rather slow, suggesting very compact magnetospheres. The
profile development seems to anti-correlate with the companion mass and the
spin period, again suggesting that the amount of mass transfer in a binary
system might directly influence the emission properties. The angular radius of
radio beams of millisecond pulsars does not follow the scaling predicted from a
canonical pulsar model which is applicable for normal pulsars. Instead they are
systematically smaller. The smaller inferred luminosity and narrower emission
beams will need to be considered in future calculations of the birth-rate of
the Galactic population.Comment: 40 pages, 14 figures, accepted for publication in Ap
- âŠ