22 research outputs found
Analytic Derivatives of Quartic-Scaling Doubly Hybrid XYGJ-OS Functional: Theory, Implementation, and Benchmark Comparison with M06-2X and MP2 Geometries for Nonbonded Complexes
Analytic first derivative expression of opposite-spin (OS) ansatz-adapted quartic scaling doubly hybrid XYGJ-OS functional is derived and implemented into Q-Chem. The resulting algorithm scales quartically with system size as in OS-MP2 gradient, by utilizing the combination of Laplace transformation and density
fitting technique. The performance of XYGJ-OS geometry optimization is assessed by comparing the bond lengths and the intermolecular properties in reference coupled cluster methods. For the selected nonbonded complexes in the S22 and S66 data sets used in the present benchmark test, it is shown that XYGJOS geometries are more accurate than M06-2X and RI-MP2, the two quantum chemical methods widely used to obtain accurate geometries for practical systems, and comparable to CCSD(T) geometries
Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order MĂžllerâPlesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube
Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchangeâcorrelation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclearâelectronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an âopen teamwareâ model and an increasingly modular design
Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes
A family of transition metal dichalcogenide
(TMD) nanosheets has
recently shown its potential as negative electrodes in lithium ion
batteries (LIBs). Herein, Na ion adsorption and migration properties
as well as the possibility of phase transition induced by the Na adsorption
on TiS<sub>2</sub>, VS<sub>2</sub>, CrS<sub>2</sub>, CoTe<sub>2</sub>, NiTe<sub>2</sub>, ZrS<sub>2</sub>, NbS<sub>2</sub>, and MoS<sub>2</sub> are predicted using first-principles calculations. In terms
of average voltage and capacity, M = Ti, Zr, Nb, and Mo are found
to be suitable as anodes for sodium ion batteries (SIBs) with voltages
of 0.49â0.95 V and theoretical capacities of 260â339
mA h g<sup>â1</sup>. Among the latter four screened TMDs, in
particular, TiS<sub>2</sub> and NbS<sub>2</sub> are expected to maintain
the same configurational phase upon sodiation (favorable kinetics)
with Na ion migration barriers of 0.22 and 0.07 eV, respectively,
suggesting that these TMD compounds could be promising for high-power
energy storage applications. It is shown that a proper treatment of
phase transitions during sodiation, though often neglected in the
literature, is critical in an accurate theoretical description and
interpretation of these two-dimensional materials
On the structure of Si(100) surface:importance of higher order correlations for buckled dimer
We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003)10.1063/1.1620994]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface
Origin of unusual spinel-to-layered phase transformation by crystal water
It is well known that many layered transition metal oxides can transform into a spinel structure upon repeated battery cycling, but a phase transition in the opposite direction is rare. Recently, the transformation from spinel Mn3O4 to layered MnO2 was observed during the operation of a Mg battery in aqueous conditions, resulting in high performance Mg batteries. We hereby use ab initio calculations to unveil the mechanism by which crystal water plays a critical role in this unique transformation. Once inserted into the spinel form, a water molecule donates an electron, offering a key structural and thermodynamic driving force to initiate the transformation process. These crystal water molecules then get favorably clustered into a planar form in the layered structure and act as a stabilizing agent for birnessite. Kinetically, the inserted crystal water dramatically promotes the necessary rearrangement of Mn during the transition by lowering the activation barrier by >2 eV. The present structural, thermodynamic and kinetic understanding of the crystal water-driven phase transition provides novel insights to further the design of related low dimensional hydrated materials for multi-valent cathodes.
Changes in Air Quality during the COVID-19 Pandemic and Associated Health Benefits in Korea
The COVID-19 pandemic was caused by a highly contagious coronavirus that has triggered worldwide control actions such as social distancing and lockdowns. COVID-19 control actions have resulted in improved air quality locally and around the world in the short-term by limiting human activity. We analyzed the impacts of social distancing and transboundary pollutants on air quality changes using open data and examined the corresponding health benefits focusing on two domestic cities (Seoul and Daegu) in Korea where the spread of coronavirus was severe. During the COVID-19 pandemic, PM2.5, PM10, and NO2 concentrations decreased significantly by 31%, 61%, and 33%, respectively, compared to the previous three years. In particular, the PM2.5/PM10 ratio fell 24.5% after the implementation of social distancing, suggesting a decrease in anthropogenic emissions. Moreover, we found that the air quality index (AQI) also improved significantly, with a focus on reducing exposure to sensitive groups. In Seoul and Daegu, improved air quality prevented 250 and 78 premature deaths, and health costs were USD 884 million and USD 278 million, respectively. On the other hand, health loss due to COVID-19 deaths was in sharp contrast to USD 7.1 million and USD 543.6 million. Our findings indicate a significant association between COVID-19 prevalence patterns and health outcomes