176 research outputs found

    Toward Guidelines for Research on Human Embryo Models Formed from Stem Cells.

    Get PDF
    Over the past few years, a number of research groups have reported striking progress on the generation of in vitro models from mouse and human stem cells that replicate aspects of early embryonic development. Not only do these models reproduce some key cell fate decisions but, especially in the mouse system, they also mimic the spatiotemporal arrangements of embryonic and extraembryonic tissues that are required for developmental patterning and implantation in the uterus. If such models could be developed for the early human embryo, they would have great potential benefits for understanding early human development, for biomedical science, and for reducing the use of animals and human embryos in research. However, guidelines for the ethical conduct of this line of work are at present not well defined. In this Forum article, we discuss some key aspects of this emerging area of research and provide some recommendations for its ethical oversight

    Initial experience with an electron FLASH research extension (FLEX) for the Clinac system

    Get PDF
    Purpose: Radiotherapy delivered at ultra-high-dose-rates (≄40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. Methods: A linear accelerator (Clinac 23EX) was modified to include a nonclinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. Results: The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached amaximum dose rate \u3e3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes \u3e10 × 10 cm2. The output stability of the FLASH system exhibited a dose deviation of \u3c1%.Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. Conclusion: Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists

    Transcriptome dynamics of CD4âș T cells during malaria maps gradual transit from effector to memory

    Get PDF
    The dynamics of CD4âș T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4âș T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (T_H1) and follicular helper T (T_(FH)) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated T_H1 and T_(FH) trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between T_(FH) and central memory were revealed, with antimalarials modulating these responses and boosting T_H1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4âș T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene–gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/)

    Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann Syndrome

    Get PDF
    The genetic basis is unknown for ∌60% of normosmic hypogonadotropic hypogonadism (nHH)/Kallmann syndrome (KS). DNAs from (17 male and 31 female) nHH/KS patients were analyzed by targeted next generation sequencing (NGS) of 261 genes involved in hypothalamic, pituitary, and/or olfactory pathways, or suggested by chromosome rearrangements. Selected variants were subjected to Sanger DNA sequencing, the gold standard. The frequency of Sanger-confirmed variants was determined using the ExAC database. Variants were classified as likely pathogenic (frameshift, nonsense, and splice site) or predicted pathogenic (nonsynonymous missense). Two novel FGFR1 mutations were identified, as were 18 new candidate genes including: AMN1, CCKBR, CRY1, CXCR4, FGF13, GAP43, GLI3, JAG1, NOS1, MASTL, NOTCH1, NRP2, PALM2, PDE3A, PLEKHA5, RD3, and TRAPPC9, and TSPAN11. Digenic and trigenic variants were found in 8/48 (16.7%) and 1/48 (2.1%) patients, respectively. NGS with confirmation by Sanger sequencing resulted in the identification of new causative FGFR1 gene mutations and suggested 18 new candidate genes in nHH/KS

    Near-Infrared and Optical Observations of Type Ic SN 2021krf: Luminous Late-time Emission and Dust Formation

    Full text link
    We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising KK-band continuum flux density longward of ∌\sim 2.0 ÎŒ\mum, and a late-time optical spectrum at day 259 shows strong [O I] 6300 and 6364 \r{A} emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∌\sim 2 ×\times 10−5^{-5} M⊙_{\odot} and a dust temperature of ∌\sim 900 - 1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C-O star masses of 3.93 and 5.74 M⊙_{\odot}, but with the same best-fit 56^{56}Ni mass of 0.11 M⊙_{\odot} for early times (0-70 days). At late times (70-300 days), optical light curves of SN 2021krf decline substantially more slowly than that expected from 56^{56}Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar.Comment: Accepted for publication in ApJ, 27 pages, 21 figures, 6 tables. Previous arXiv submission (arXiv:2211.00205) replaced after acceptanc

    The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    Get PDF
    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms

    Height, selected genetic markers and prostate cancer risk:Results from the PRACTICAL consortium

    Get PDF
    Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180cm are at a 22% increased risk as compared to men with height o173cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.</p

    Transcriptome dynamics of CD4âș T cells during malaria maps gradual transit from effector to memory

    Get PDF
    The dynamics of CD4âș T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4âș T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (T_H1) and follicular helper T (T_(FH)) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated T_H1 and T_(FH) trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between T_(FH) and central memory were revealed, with antimalarials modulating these responses and boosting T_H1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4âș T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene–gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/)
    • 

    corecore