943 research outputs found

    Data report: Seismic structure beneath the North Cascadia drilling transect of IODP Expedition 311

    Get PDF
    Between 1999 and 2004, new seismic data became available for the study of gas hydrates on the northern Cascadia margin. These data consist of multi- and single-channel data with two- and partly three-dimensional subsurface coverage and were acquired and used in support of the proposal for Integrated Ocean Drilling Program (IODP) Expedition 311 carried out in 2005. The working area lies across the continental slope off the coast of central Vancouver Island, British Columbia, Canada, with water depths ranging from 2600 m in the trench to 500 m on the upper slope, where it is well above the minimum depth for gas hydrate stability. This paper gives the details of the data acquisition and conventional processing and then focuses on describing the new data at six individual sites along a transect across the gas hydrate zone. Five of the sites were drilled during the Expedition 311. The transect of sites commences at the almost undeformed incoming sediments seaward of the region where gas hydrates are observed; these ocean basin sediments were drilled at a site 40 km southeast during Ocean Drilling Program (ODP) Leg 146. The transect continues up the continental slope into the area of hydrate stability, with a site on top of the frontal accretionary ridge where normal faulting indicates margin parallel extension; a site in the first slope basin overlying a buried ridge near a reflectivity wipe-out zone; a site adjacent to Site 889 of Leg 146 and therefore acting as a tie hole; the most landward site at the shallowest end of the hydrate stability field; and a cold vent site at one of several blank zones close to a bright spot region in the seismic records

    Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity

    Get PDF
    Gas hydrate beneath the N. Cascadia continental slope off Vancouver Island occurs as a regional diffuse layer above the BSR and as local high concentrations in large vent or upwelling structures. Regional concentrations of gas hydrate beneath the N. Cascadia continental slope off Vancouver Island have been estimated earlier using multichannel seismic, seafloor electrical, and IODP Leg 146 downhole data. The concentrations of between 15 and 30% of pore saturation in a 100 m thick layer above the BSR are much higher than estimated elsewhere where there is good data, especially the Blake Ridge and central Cascadia off Oregon on ODP Leg 204. Although both of these other studies involved different sediment environments, a careful re-evaluation of the N. Cascadia estimates seemed desirable. We have re-evaluated the methods used to calculate the gas hydrate concentrations from pore-water chlorinity (salinity), electrical resistivity, and seismic velocity, describing in detail the assumptions and uncertainties. Use of the pore-water chlorinity/salinity and electrical resistivity directly have low reliability because of the effect on the no-hydrate reference of hydrate formation and dissociation, and the effect of pore fluid freshening by clay dehydration. At ODP Site 889/890 hydrate concentrations range from 5–10% to 30–40%, depending on the no-hydrate reference salinity used. Use of core salinity data along with the downhole and seafloor electrical resistivity data allows calculation of both the in situ reference salinity and the hydrate concentrations. The most important uncertainty in this method is the relation between resistivity and porosity, i.e., Archie’s Law parameters. Significantly different relations were determined from the ODP Leg 146 core and downhole log data, the log data resistivity-porosity relation giving much lower concentrations. Finally, seismic velocities from sonic-logs and multichannel data can be used to calculate gas hydrate concentrations, if an appropriate no-hydrate velocity-depth profile can be estimated. A velocity-hydrate concentration relation is also required. Depending on which no-hydrate/no-gas velocity baseline is used, estimated hydrate concentrations range from as low as 5% to above 25% saturation. In spite of having three nearly independent methods of estimating hydrate concentrations, it is concluded that the data allow regional concentrations in the 100 m layer above the BSR from less than 5% to over 25% saturation (3-13% of sediment volume). ODP drilling in the region scheduled for the fall of 2005 should help resolve the uncertainties

    Measures of Model Performance Based On the Log Accuracy Ratio

    Get PDF
    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio and derive from it two metrics: the median symmetric accuracy and the symmetric signed percentage bias. Robust methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.Peer reviewe

    The fate of fluids released from subducting slab in northern Cascadia

    Get PDF
    Large amounts of water carried down in subduction zones are driven upward into the overlying forearc upper mantle and crust as increasing temperatures and pressure dehydrate the subducting crust. Through seismic tomography velocities we show (a) the overlying forearc mantle in northern Cascadia is hydrated to serpentinite, and (b) there is low Poisson's ratio at the base of the forearc lower crust that may represent silica deposited from the rising fluids. From the velocities observed in the forearc mantle, the volume of serpentinite estimated is ∼30 %. This mechanically weak hydrated forearc region has important consequences in limits to great earthquakes and to collision tectonics. An approximately 10 km thick lower crustal layer of low Poisson's ratio (σ = 0.22) in the forearc is estimated to represent a maximum addition of ∼14 % by volume of quartz (σ = 0.09). If this quartz is removed from rising silica-saturated fluids over long times, it represents a significant addition of silica to the continental crust and an important contributor to its average composition

    Wide angle seismic recordings from the 2002 Georgia Basin Geohazards Initiative, Northwestern Washington and British Columbia

    Get PDF
    This report describes the acquisition and processing of shallow-crustal wide-angle seismicreflection and refraction data obtained during a collaborative study in the Georgia Strait, western Washington and southwestern British Columbia. The study, the 2002 Georgia Strait Geohazards Initiative, was conducted in May 2002 by the Pacific Geoscience Centre, the U.S. Geological Survey, and the University of Victoria. The wide-angle recordings were designed to image shallow crustal faults and Cenozoic sedimentary basins crossing the International Border in southern Georgia basin and to add to existing wide-angle recordings there made during the 1998 SHIPS experiment. We recorded, at wide-angle, 800 km of shallow penetration multichannel seismic-reflection profiles acquired by the Canadian Coast Guard Ship (CCGS) Tully using an air gun with a volume of 1.967 liters (120 cu. in.). Prior to this reflection survey, we deployed 48 Refteks onshore to record the airgun signals at wide offsets. Three components of an oriented, 4.5 Hz seismometer were digitally recorded at all stations. Nearly 160,300 individual air gun shots were recorded along 180 short seismic reflection lines. In this report, we illustrate the wide-angle profiles acquired using the CCGS Tully, describe the land recording of the air gun signals, and summarize the processing of the land recorder data into common-receiver gathers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but the experiment provided useful data from 42 of the 48 stations deployed. Three-fourths of all stations yielded useful first-arrivals to source-receiver offsets beyond 10 km: the average maximum source-receiver offset for first arrivals was 17 km. Six stations yielded no useful data and useful firstarrivals were limited to offsets less than 10 km at five stations. We separately archived our recordings of 86 local and regional earthquakes ranging in magnitude from 0.2 to 4.3 and 16 teleseisms ranging in magnitude 5.5 to 6.5

    Growth of collisional orogens from small and cold to large and hot - inferences from geodynamic models

    Get PDF
    It is well documented that the interplay between crustal thickening and surface processes determines growth of continent‐continent collision orogens from small and cold to large and hot. Additionally, studies have demonstrated that the structural style of a mountain belt is strongly influenced by inherited (extensional) structures, the pattern of erosion and deposition, as well as the distribution of shallow detachment horizons. However, the factors controlling distribution of shortening and variable structural style as a function of convergence and surface process efficiency remain less explored. We use a 2D upper‐mantle scale plane‐strain thermo‐mechanical model (FANTOM) coupled to a planform, mass conserving surface‐process model (Fastscape), to investigate the long‐term evolution of mountain belts and the influence of lithospheric pull, extensional inheritance, surface processes efficiency, and decoupling between thin‐and thick‐skinned tectonics. We establish an evolutionary shortening distribution for orogenic growth from a mono‐vergent wedge to an orogenic plateau, and find that internal crustal loading is the main factor controlling the large scale evolution, while lithospheric pull modulates the plate driving force for orogenesis. Limited foreland‐basin filling and minor exhumation of the orogen core are characteristic for low surface‐process efficiency, while thick foreland‐basin fill, and profound exhumation of the orogen core are characteristic for high surface‐process efficiency. Utilizing a force balance analysis, we show how inherited structures, surface processes, and decoupling between thin‐and thick‐skinned deformation influence structural style during orogenic growth. Finally, we present a comparison of our generic modeling results with natural systems, with a particular focus on the Pyrenees, Alps, and Himalaya‐Tibet

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years
    • 

    corecore