6 research outputs found

    Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    No full text
    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp

    Machine Learning-Based prediction of Post-Treatment ambulatory blood pressure in patients with hypertension

    No full text
    Purpose. Pre-treatment prediction of individual blood pressure (BP) response to anti-hypertensive medication is important to determine the specific regimen for promptly and safely achieving a target BP. This study aimed to develop supervised machine learning (ML) models for predicting patient-specific treatment effects using 24-hour ambulatory BP monitoring (ABPM) data. Materials and Methods. A total of 1,129 patients who had both baseline and follow-up ABPM data were randomly assigned into training, validation and test sets in a 3:1:1 ratio. Utilising the features including clinical and laboratory findings, initial ABPM data, and anti-hypertensive medication at baseline and at follow-up, ML models were developed to predict post-treatment individual BP response. Each case was labelled by the mean 24-hour and daytime BPs derived from the follow-up ABPM. Results. At baseline, 616 (55%) patients had been treated using mono or combination therapy with 45 anti-hypertensive drugs and the remaining 513 (45%) patients had been untreated (drug-naïve). By using CatBoost, the difference between predicted vs. measured mean 24-hour systolic BP at follow-up was 8.4 ± 7.0 mm Hg (% difference of 6.6% ± 5.7%). The difference between predicted vs. measured mean 24-hour diastolic BP was 5.3 ± 4.3 mm Hg (% difference of 6.8% ± 5.5%). There were significant correlations between the CatBoost-predicted vs. the ABPM-measured changes in the mean 24-hour Systolic (r = 0.74) and diastolic (r = 0.68) BPs from baseline to follow-up. Even in the patients with renal insufficiency or diabetes, the correlations between CatBoost-predicted vs. ABPM-measured BP changes were significant. Conclusion. ML algorithms accurately predict the post-treatment ambulatory BP levels, which may assist clinicians in personalising anti-hypertensive treatment

    Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    No full text
    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6–32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5–25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughpu

    Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    No full text
    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6–32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5–25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughpu

    Effect of neutralizing agents on the type of As co-precipitates formed by in situ Fe oxides synthesis and its impact on the bioaccessibility of As in soil

    No full text
    The bioaccessibility of heavy metals in soil is closely related to their potential risk. Therefore, developing techniques for reducing it needs considerable attention. In this study, we aimed to co-precipitate soil As (V) through an in situ formation of Fe oxides, thereby reducing its bioaccessibility. Soil As(V) was co-precipitated by introducing 2% Fe-nitrate (w/w) and 30% water (v/w) into soil at pH -7. Two different neutralizing agents ( NaOH and CaO) were used to induce the precipitation of Fe oxides, and their effects on the speciation of As were investigated. In all the stabilized soils, the exchangeable As fraction decreased, and the fraction of As bound to amorphous Fe oxides increased by a factor of more than 1.4. In contrast, a marked decrease in bioaccessibility of As was achieved using NaOH (40% to 7%). X-ray absorption spectroscopy analysis demonstrated that highly bioaccessible forms of calcium iron arsenate (yukonite and arseniosiderite) could be generated in CaO-stabilized soil. Our study found that neutralizing agents may play an important role in stabilizing As(V) and lowering its bioaccessibility through determining the type of formed Fe oxides in soil. (C) 2020 Elsevier B.V. All rights reserved.N
    corecore