55 research outputs found

    DiffMatch: Diffusion Model for Dense Matching

    Full text link
    The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, recent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, and large displacements. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms. Unlike previous approaches, this is accomplished by leveraging a conditional denoising diffusion model. DiffMatch consists of two main components: conditional denoising diffusion module and cost injection module. We stabilize the training process and reduce memory usage with a stage-wise training strategy. Furthermore, to boost performance, we introduce an inference technique that finds a better path to the accurate matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. Project page is available at https://ku-cvlab.github.io/DiffMatch/.Comment: Project page is available at https://ku-cvlab.github.io/DiffMatch

    Genetic characterization of chicken infectious anaemia viruses isolated in Korea and their pathogenicity in chicks

    Get PDF
    Chicken infectious anaemia virus (CIAV) causes severe anemia and immunosuppression through horizontal or vertical transmission in young chickens. Especially, vertical transmission of virus through the egg can lead to significantly economic losses due to the increased mortality in the broiler industry. Here, 28 CIAV complete sequences circulating in Korea were first characterized using the newly designed primers. Phylogenetic analysis based on the complete sequences revealed that CIAV isolates were divided into four groups, IIa (2/28, 7.1%), IIb (9/28, 32.1%), IIIa (8/28, 28.6%) and IIIb (9/28, 32.1%), and exhibited a close relationship to each other. The major groups were IIb, IIIa and IIIb, and no strains were clustered with a vaccine strain available in Korea. Also, for viral titration, we newly developed a quantitative PCR assay that is highly sensitive, reliable and simple. To investigate the pathogenicity of three major genotypes, 18R001(IIb), 08AQ017A(IIIa), and 17AD008(IIIb) isolates were challenged into one-day-old specific-pathogen-free (SPF) chicks. Each CIAV strain caused anaemia, severe growth retardation and immunosuppression in chickens regardless of CIAV genotypes. Notably, a 17AD008 strain showed stable cellular adaptability and higher virus titer in vitro as well as higher pathogenicity in vivo. Taken together, our study provides valuable information to understand molecular characterization, genetic diversity and pathogenicity of CIAV to improve management and control of CIA in poultry farm

    SS-IL: Separated Softmax for Incremental Learning

    Full text link
    We consider class incremental learning (CIL) problem, in which a learning agent continuously learns new classes from incrementally arriving training data batches and aims to predict well on all the classes learned so far. The main challenge of the problem is the catastrophic forgetting, and for the exemplar-memory based CIL methods, it is generally known that the forgetting is commonly caused by the prediction score bias that is injected due to the data imbalance between the new classes and the old classes (in the exemplar-memory). While several methods have been proposed to correct such score bias by some additional post-processing, e.g., score re-scaling or balanced fine-tuning, no systematic analysis on the root cause of such bias has been done. To that end, we analyze that computing the softmax probabilities by combining the output scores for all old and new classes could be the main source of the bias and propose a new CIL method, Separated Softmax for Incremental Learning (SS-IL). Our SS-IL consists of separated softmax (SS) output layer and ratio-preserving (RP) mini-batches combined with task-wise knowledge distillation (TKD), and through extensive experimental results, we show our SS-IL achieves very strong state-of-the-art accuracy on several large-scale benchmarks. We also show SS-IL makes much more balanced prediction, without any additional post-processing steps as is done in other baselines

    Macrocell Protection Interference Alignment in Two-Tier Downlink Heterogeneous Networks

    Get PDF
    Conventional interference alignment (IA) has been developed to mitigate interference problems for the coexistence of picocells and macrocells. This paper proposes a macrocell protection interference alignment (MCP-IA) in two-tier MIMO downlink heterogeneous networks. The proposed method aligns the interference of the macro user equipment (UE) and mitigates the interference of the pico-UEs with a minimum mean squared error interference rejection combining (MMSE-IRC) receiver. Compared to the conventional IA, the proposed MCP-IA provides an additional array gain obtained by the precoder design of the macro BS and a diversity gain achieved by signal space selections. The degrees of freedom (DoF) of the proposed MCP-IA are equal to or greater than that of the conventional IA and are derived theoretically. Link level simulations show the link capacity and the DoF of the macro UE, and also exhibit the proposed MCP-IA attaining additional array gain and diversity gain. The system level simulation illustrates that the proposed method prevents the interference of the macro UE completely and preserves the throughput of the pico-UE irrespective of the number of picocells. For 4 × 2 antenna configuration, the system level simulation demonstrates that the proposed MCP-IA throughput of the macro UE is not affected by the number of picocells and that the proposed MCP-IA throughput of the picocells approaches that of single-user MIMO (SU-MIMO) with a 3% loss

    One-directional flow of ionic solutions along fine electrodes under an alternating current electric field

    Get PDF
    Electric fields are widely used for controlling liquids in various research fields. To control a liquid, an alternating current (AC) electric field can offer unique advantages over a direct current (DC) electric field, such as fast and programmable flows and reduced side effects, namely the generation of gas bubbles. Here, we demonstrate one-directional flow along carbon nanotube nanowires under an AC electric field, with no additional equipment or frequency matching. This phenomenon has the following characteristics: First, the flow rates of the transported liquid were changed by altering the frequency showing Gaussian behaviour. Second, a particular frequency generated maximum liquid flow. Third, flow rates with an AC electric field (approximately nanolitre per minute) were much faster than those of a DC electric field (approximately picolitre per minute). Fourth, the flow rates could be controlled by changing the applied voltage, frequency, ion concentration of the solution and offset voltage. Our finding of microfluidic control using an AC electric field could provide a new method for controlling liquids in various research fields

    The Semantic Reader Project: Augmenting Scholarly Documents through AI-Powered Interactive Reading Interfaces

    Full text link
    Scholarly publications are key to the transfer of knowledge from scholars to others. However, research papers are information-dense, and as the volume of the scientific literature grows, the need for new technology to support the reading process grows. In contrast to the process of finding papers, which has been transformed by Internet technology, the experience of reading research papers has changed little in decades. The PDF format for sharing research papers is widely used due to its portability, but it has significant downsides including: static content, poor accessibility for low-vision readers, and difficulty reading on mobile devices. This paper explores the question "Can recent advances in AI and HCI power intelligent, interactive, and accessible reading interfaces -- even for legacy PDFs?" We describe the Semantic Reader Project, a collaborative effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers. Through this project, we've developed ten research prototype interfaces and conducted usability studies with more than 300 participants and real-world users showing improved reading experiences for scholars. We've also released a production reading interface for research papers that will incorporate the best features as they mature. We structure this paper around challenges scholars and the public face when reading research papers -- Discovery, Efficiency, Comprehension, Synthesis, and Accessibility -- and present an overview of our progress and remaining open challenges

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore