2,226 research outputs found
Insulin-like growth factors and related proteins in plasma and cerebrospinal fluids of HIV-positive individuals.
BackgroundClinically significant dysregulation of the insulin-like growth factor (IGF) family proteins occurs in HIV-infected individuals, but the details including whether the deficiencies in IGFs contribute to CNS dysfunction are unknown.MethodsWe measured the levels of IGF1, IGF2, IGFBP1, IGFBP2, and IGF2 receptor (IGF2R) in matching plasma and cerebrospinal fluid (CSF) samples of 107 HIV+ individuals from CNS HIV Antiretroviral Therapy Effects Research (CHARTER) and analyzed their associations with demographic and disease characteristics, as well as levels of several soluble inflammatory mediators (TNFα, IL-6, IL-10, IL-17, IP-10, MCP-1, and progranulin). We also determined whether IGF1 or IGF2 deficiency is associated with HIV-associated neurocognitive disorder (HAND) and whether the levels of soluble IGF2R (an IGF scavenging receptor, which we also have found to be a cofactor for HIV infection in vitro) correlate with HIV viral load (VL).ResultsThere was a positive correlation between the levels of IGF-binding proteins (IGFBPs) and those of inflammatory mediators: between plasma IGFBP1 and IL-17 (β coefficient 0.28, P = 0.009), plasma IGFBP2 and IL-6 (β coefficient 0.209, P = 0.021), CSF IGFBP1 and TNFα (β coefficient 0.394, P < 0.001), and CSF IGFBP2 and TNF-α (β coefficient 0.14, P < 0.001). As IGFBPs limit IGF availability, these results suggest that inflammation is a significant factor that modulates IGF protein expression/availability in the setting of HIV infection. However, there was no significant association between HAND and the reduced levels of plasma IGF1, IGF2, or CSF IGF1, suggesting a limited power of our study. Interestingly, plasma IGF1 was significantly reduced in subjects on non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy (ART) compared to protease inhibitor-based therapy (174.1 ± 59.8 vs. 202.8 ± 47.3 ng/ml, P = 0.008), suggesting a scenario in which ART regimen-related toxicity can contribute to HAND. Plasma IGF2R levels were positively correlated with plasma VL (β coefficient 0.37, P = 0.021) and inversely correlated with current CD4+ T cell counts (β coefficient -0.04, P = 0.021), supporting our previous findings in vitro.ConclusionsTogether, these results strongly implicate (1) an inverse relationship between inflammation and IGF growth factor availability and the contribution of IGF deficiencies to HAND and (2) the role of IGF2R in HIV infection and as a surrogate biomarker for HIV VL
Refolding dynamics of stretched biopolymers upon force quench
Single molecule force spectroscopy methods can be used to generate folding
trajectories of biopolymers from arbitrary regions of the folding landscape. We
illustrate the complexity of the folding kinetics and generic aspects of the
collapse of RNA and proteins upon force quench, using simulations of an RNA
hairpin and theory based on the de Gennes model for homopolymer collapse. The
folding time, , depends asymmetrically on and
where () is the stretch (quench) force, and
is the transition mid-force of the RNA hairpin. In accord with
experiments, the relaxation kinetics of the molecular extension, , occurs
in three stages: a rapid initial decrease in the extension is followed by a
plateau, and finally an abrupt reduction in that occurs as the native
state is approached.
The duration of the plateau increases as decreases
(where is the time in which the force is reduced from to ).
Variations in the mechanisms of force quench relaxation as is altered
are reflected in the experimentally measurable time-dependent entropy, which is
computed directly from the folding trajectories. An analytical solution of the
de Gennes model under tension reproduces the multistage stage kinetics in
. The prediction that the initial stages of collapse should also be a
generic feature of polymers is validated by simulation of the kinetics of
toroid (globule) formation in semiflexible (flexible) homopolymers in poor
solvents upon quenching the force from a fully stretched state. Our findings
give a unified explanation for multiple disparate experimental observations of
protein folding.Comment: 31 pages 11 figure
Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models
The distances over which biological molecules and their complexes can
function range from a few nanometres, in the case of folded structures, to
millimetres, for example during chromosome organization. Describing phenomena
that cover such diverse length, and also time scales, requires models that
capture the underlying physics for the particular length scale of interest.
Theoretical ideas, in particular, concepts from polymer physics, have guided
the development of coarse-grained models to study folding of DNA, RNA, and
proteins. More recently, such models and their variants have been applied to
the functions of biological nanomachines. Simulations using coarse-grained
models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure
Size, shape, and flexibility of RNA structures
Determination of sizes and flexibilities of RNA molecules is important in
understanding the nature of packing in folded structures and in elucidating
interactions between RNA and DNA or proteins. Using the coordinates of the
structures of RNA in the Protein Data Bank we find that the size of the folded
RNA structures, measured using the radius of gyration, , follows the Flory
scaling law, namely, \AA where N is the number of
nucleotides. The shape of RNA molecules is characterized by the asphericity
and the shape parameters that are computed using the eigenvalues
of the moment of inertia tensor. From the distribution of , we find
that a large fraction of folded RNA structures are aspherical and the
distribution of values shows that RNA molecules are prolate (). The
flexibility of folded structures is characterized by the persistence length
. By fitting the distance distribution function to the worm-like
chain model we extracted the persistence length . We find that \AA. The dependence of on implies the average length of
helices should increases as the size of RNA grows. We also analyze packing in
the structures of ribosomes (30S, 50S, and 70S) in terms of , ,
, and . The 70S and the 50S subunits are more spherical compared to
most RNA molecules. The globularity in 50S is due to the presence of an
unusually large number (compared to 30S subunit) of small helices that are
stitched together by bulges and loops. Comparison of the shapes of the intact
70S ribosome and the constituent particles suggests that folding of the
individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres
QED corrections to isospin-related decay rates of charged and neutral B mesons
We estimate the isospin-violating QED radiative corrections to the
charged-to-neutral ratios of the decay rates for B^+ and B^0 in non-leptonic B
meson decays. In particular, these corrections are potentially important for
precision measurement of the charged-to-neutral production ratio of B meson in
e^+e^- annihilation. We calculate explicitly the QED corrections to the ratios
of two different types of decay rates \Gamma(B^+ \to J/\psi K^+)/\Gamma(B^0 \to
J/\psi K^0) and \Gamma(B^+ \to D^+_S \bar{D^0})/\Gamma(B^0 \to D^+_S D^-)
taking into account the form factors of the mesons based on the vector meson
dominance model, and compare them with the results obtained for the point-like
mesons.Comment: 7 pages, 9 eps figure
Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension
In addition to thermal noise, which is essential to promote conformational
transitions in biopolymers, cellular environment is replete with a spectrum of
athermal fluctuations that are produced from a plethora of active processes. To
understand the effect of athermal noise on biological processes, we studied how
a small oscillatory force affects the thermally induced folding and unfolding
transition of an RNA hairpin, whose response to constant tension had been
investigated extensively in both theory and experiments. Strikingly, our
molecular simulations performed under overdamped condition show that even at a
high (low) tension that renders the hairpin (un)folding improbable, a weak
external oscillatory force at a certain frequency can synchronously enhance the
transition dynamics of RNA hairpin and increase the mean transition rate.
Furthermore, the RNA dynamics can still discriminate a signal with resonance
frequency even when the signal is mixed among other signals with nonresonant
frequencies. In fact, our computational demonstration of thermally induced
resonance in RNA hairpin dynamics is a direct realization of the phenomena
called stochastic resonance (SR) and resonant activation (RA). Our study,
amenable to experimental tests using optical tweezers, is of great significance
to the folding of biopolymers in vivo that are subject to the broad spectrum of
cellular noises.Comment: 22 pages, 7 figure
Reverse Doppler Effect of Sound
We report observation of reverse Doppler effect in a double negative acoustic
metamaterial. The metamaterial exhibited negative phase velocity and positive
group velocity. The dispersion relation is such that the wavelength
corresponding to higher frequency is longer. We observed that the frequency was
down-shifted for the approaching source, and up-shifted when the source
receded
Recommended from our members
Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts.
Many heterogeneous catalytic reactions occur at high temperatures, which may cause large energy costs, poor safety, and thermal degradation of catalysts. Here, we propose a light-assisted surface reaction, which catalyze the surface reaction using both light and heat as an energy source. Conventional metal catalysts such as ruthenium, rhodium, platinum, nickel, and copper were tested for CO2 hydrogenation, and ruthenium showed the most distinct change upon light irradiation. CO2 was strongly adsorbed onto ruthenium surface, forming hybrid orbitals. The band gap energy was reduced significantly upon hybridization, enhancing CO2 dissociation. The light-assisted CO2 hydrogenation used only 37% of the total energy with which the CO2 hydrogenation occurred using only thermal energy. The CO2 conversion could be turned on and off completely with a response time of only 3 min, whereas conventional thermal reaction required hours. These unique features can be potentially used for on-demand fuel production with minimal energy input
Mechanical control of the directional stepping dynamics of the kinesin motor
Among the multiple steps constituting the kinesin's mechanochemical cycle,
one of the most interesting events is observed when kinesins move an 8-nm step
from one microtubule (MT)-binding site to another. The stepping motion that
occurs within a relatively short time scale (~100 microsec) is, however, beyond
the resolution of current experiments, therefore a basic understanding to the
real-time dynamics within the 8-nm step is still lacking. For instance, the
rate of power stroke (or conformational change), that leads to the
undocked-to-docked transition of neck-linker, is not known, and the existence
of a substep during the 8-nm step still remains a controversial issue in the
kinesin community. By using explicit structures of the kinesin dimer and the MT
consisting of 13 protofilaments (PFs), we study the stepping dynamics with
varying rates of power stroke (kp). We estimate that 1/kp <~ 20 microsec to
avoid a substep in an averaged time trace. For a slow power stroke with 1/kp>20
microsec, the averaged time trace shows a substep that implies the existence of
a transient intermediate, which is reminiscent of a recent single molecule
experiment at high resolution. We identify the intermediate as a conformation
in which the tethered head is trapped in the sideway binding site of the
neighboring PF. We also find a partial unfolding (cracking) of the binding
motifs occurring at the transition state ensemble along the pathways prior to
binding between the kinesin and MT.Comment: 26 pages, 10 figure
Recommended from our members
A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites.
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons
- …
