211 research outputs found

    Probing the sheath electric field with a crystal lattice by using thermophoresis in dusty plasma

    Full text link
    A two-dimensional dust crystal levitated in the sheath of a modified Gaseous Electronics Conference (GEC) reference cell is manipulated by heating or cooling the lower electrode. The dust charge is obtained by measuring global characteristics of the levitated crystal obtained from top-view pictures. From the force balance, the electric field in the sheath is reconstructed. From the Bohm criterion, we conclude that the dust crystal is levitated mainly above and just below the classical Bohm point

    Nitrous Oxide Emissions

    Get PDF
    End of project reportNitrous oxide (N2O) is one of the three most important greenhouse gases (GHG). Nitrous oxide emissions currently account for approximately one third of GHG emissions from agriculture in Ireland. Emissions of N2O arise naturally from soil sources and from the application of nitrogen (N) in the form of N fertilizers and N in dung and urine deposition by grazing animals at pasture. Nitrous oxide emission measurements were conducted at three different scales. Firstly, a large-scale field experiment was undertaken to compare emission rates from a pasture receiving three different rates of N fertilizer application and to identify the effects of controlling variables over a two-year period. Variation in emission rates was large both within and between years. Two contrasting climatic years were identified. The cooler and wetter conditions in year 1 gave rise to considerably lower emission levels than the warmer and drier year 2. However, in both years, peak emissions were associated with fertilizer N applications coincident with rainfall events in the summer months. A small-plot study was conducted to identify the individual and combined effects of fertilizer, dung and urine applications to grassland. Treatment effects were however, difficult to obtain due to the overriding effects of environmental variables. Thirdly, through the use of a small-scale mini-lysimeter study, the diurnal nature of N2O emission rates was identified for two distinct periods during the year. The occurrence of a diurnal pattern has important implications for the identification of a measurement period during the day which is representative of the true daily flux. The research presented aims to identify the nature and magnitude of N2O emissions and the factors which affect emission rates from a grassland in Ireland. Further work is required to integrate the effects of different soil types and contrasting climatic regimes across soil types on N2O emissions.Environmental Protection Agenc

    Novel evaluation of the two-pion contribution to the nucleon isovector form factors

    Get PDF
    We calculate the two-pion continuum contribution to the nucleon isovector spectral functions drawing upon the new high statistics measurements of the pion form factor by the CMD-2, KLOE, and SND collaborations. The general structure of the spectral functions remains unchanged, but the magnitude increases by about 10%. Using the updated spectral functions, we calculate the contribution of the two-pion continuum to the nucleon isovector form factors and radii. We compare the isovector radii with simple rho-pole models and illustrate their strong underestimation in such approaches. Moreover, we give a convenient parametrization of the result for use in future form factor analyses.Comment: 9 pages, 2 eps figures, revtex4, CMD-2 and SND data included, conclusions unchanged, version to appear in Phys. Lett.

    Nucleon Form Factors in Dispersion Theory

    Full text link
    Dispersion relations provide a powerful tool to analyse the electromagnetic form factors of the nucleon both in the space-like and time-like regions with constraints from other experiments, unitarity, and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and present first results from our ongoing form factor analysis. We also calculate the two-pion continuum contribution to the isovector spectral functions drawing upon the new high statistics measurements of the pion form factor by the CMD-2, KLOE, and SND collaborations.Comment: 9 pages, 9 figures, invited talk at the Symposium "20 Years of Physics at the Mainz Microtron MAMI", October 20-22, 2005, Mainz, German

    The interactive effects of fertiliser nitrogen with dung and urine on nitrous oxide emissions in grassland

    Get PDF
    The authors wish to thank the Environmental Protection Agency for funding support under the Environmental Research Technological Development and Innovation programme and the Irish Department of Agriculture, Food and the Marine for funding support (Grant numbers RSF 13S430 and 11S138).peer-reviewedNitrous oxide (N2O) is an important and potent greenhouse gas (GHG). Although application of nitrogen (N) fertiliser is a feature of many grazing systems, limited data is available on N2O emissions in grassland as a result of the interaction between urine, dung and fertiliser N. A small plot study was conducted to identify the individual and interactive effects of calcium ammonium nitrate (CAN) fertiliser, dung and urine. Application of CAN with dung and urine significantly increased the mass of N2O-N emission. Importantly, the sum of N2O-N emitted from dung and CAN applied individually approximated the emission from dung and CAN fertiliser applied together, that is, an additive effect. However, in the case of urine and CAN applied together, the emission was more than double the sum of the emission from urine and CAN fertiliser applied individually, that is, a multiplicative effect. Nitrous oxide emissions from dung, urine and fertiliser N are typically derived individually and these individual emission estimates are aggregated to produce estimates of N2O emission. The presented findings have important implications for how individual emission factors are aggregated; they suggest that the multiplicative effect of the addition of CAN fertiliser to urine patches needs to be taken into account to refine the estimation of N2O emissions from grazing grasslands.The authors wish to thank the Environmental Protection Agency for funding support under the Environmental Research Technological Development and Innovation programme and the Irish Department of Agriculture, Food and the Marine for funding support (Grant numbers RSF 13S430 and 11S138)

    Experimental and computational characterization of a modified GEC cell for dusty plasma experiments

    Full text link
    A self-consistent fluid model developed for simulations of micro- gravity dusty plasma experiments has for the first time been used to model asymmetric dusty plasma experiments in a modified GEC reference cell with gravity. The numerical results are directly compared with experimental data and the experimentally determined dependence of global discharge parameters on the applied driving potential and neutral gas pressure is found to be well matched by the model. The local profiles important for dust particle transport are studied and compared with experimentally determined profiles. The radial forces in the midplane are presented for the different discharge settings. The differences between the results obtained in the modified GEC cell and the results first reported for the original GEC reference cell are pointed out

    Structures and functions of mitochondrial ABC transporters

    Get PDF
    A small number of physiologically important ATP-binding cassette (ABC) transporters are found in mitochondria. Most are half transporters of the B group forming homodimers and their topology suggests they function as exporters. The results of mutant studies point towards involvement in iron cofactor biosynthesis. In particular, ABC subfamily B member 7 (ABCB7) and its homologues in yeast and plants are required for iron-sulfur (Fe-S) cluster biosynthesis outside of the mitochondria, whereas ABCB10 is involved in haem biosynthesis. They also play a role in preventing oxidative stress. Mutations in ABCB6 and ABCB7 have been linked to human disease. Recent crystal structures of yeast Atm1 and human ABCB10 have been key to identifying substrate-binding sites and transport mechanisms. Combined with in vitro and in vivo studies, progress is being made to find the physiological substrates of the different mitochondrial ABC transporters

    Real and Virtual Compton Scattering: the nucleon polarisabilities

    Full text link
    We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.Comment: 20 pages, 12 figures. Minireview/Proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 2011 . V2: typos corrected. version to appear in EPJ Special Topic

    Testing the handbag contribution to exclusive virtual Compton scattering

    Get PDF
    We discuss the handbag approximation to exclusive deep virtual Compton scattering. After defining the kinematical region where this approximation can be valid, we propose tests for its relevance in planned electroproduction experiments, e + p -> e + p + gamma. We focus on scaling laws in the cross section, and the distribution in the angle between the lepton and hadron planes, which contains valuable information on the angular momentum structure of the Compton process. We advocate to measure weighted cross sections, which make use of the data in the full range of this angle and do not require very high event statistics.Comment: 14 pages, LaTeX, 3 figures included using epsf.st
    • …
    corecore