A self-consistent fluid model developed for simulations of micro- gravity
dusty plasma experiments has for the first time been used to model asymmetric
dusty plasma experiments in a modified GEC reference cell with gravity. The
numerical results are directly compared with experimental data and the
experimentally determined dependence of global discharge parameters on the
applied driving potential and neutral gas pressure is found to be well matched
by the model. The local profiles important for dust particle transport are
studied and compared with experimentally determined profiles. The radial forces
in the midplane are presented for the different discharge settings. The
differences between the results obtained in the modified GEC cell and the
results first reported for the original GEC reference cell are pointed out