79 research outputs found

    Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation

    Get PDF
    AMPK (AMP-activated protein kinase) is a key regulator of cellular and whole-body energy balance. AMPK phosphorylates and regulates many proteins concerned with nutrient metabolism, largely acting to suppress anabolic ATP-consuming pathways while stimulating catabolic ATP-generating pathways. This has led to considerable interest in AMPK as a therapeutic target for the metabolic dysfunction observed in obesity and insulin resistance. The role of AMPK in skeletal muscle and the liver has been extensively studied, such that AMPK has been demonstrated to inhibit synthesis of fatty acids, cholesterol and isoprenoids, hepatic gluconeogenesis and translation while increasing fatty acid oxidation, muscle glucose transport, mitochondrial biogenesis and caloric intake. The role of AMPK in the other principal metabolic and insulin-sensitive tissue, adipose, remains poorly characterized in comparison, yet increasing evidence supports an important role for AMPK in adipose tissue function. Obesity is characterized by hypertrophy of adipocytes and the development of a chronic sub-clinical pro-inflammatory environment in adipose tissue, leading to increased infiltration of immune cells. This combination of dysfunctional hypertrophic adipocytes and a pro-inflammatory environment contributes to insulin resistance and the development of Type 2 diabetes. Exciting recent studies indicate that AMPK may not only influence metabolism in adipocytes, but also act to suppress this pro-inflammatory environment, such that targeting AMPK in adipose tissue may be desirable to normalize adipose dysfunction and inflammation. In the present review, we discuss the role of AMPK in adipose tissue, focussing on the regulation of carbohydrate and lipid metabolism, adipogenesis and pro-inflammatory pathways in physiological and pathophysiological conditions

    Fat eggs shape offspring health.

    Get PDF
    How maternal diet influences offspring metabolism is unclear, as it is difficult to distinguish between the effects of the in utero environment and epigenetic factors contributed by the oocyte. In a mouse model of high-fat diet, a new study teases apart these mechanisms by using in vitro fertilization and shows that susceptibility of offspring to metabolic disorder can likely be attributed to epigenetic inheritance via the oocyte.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    Get PDF
    Background: Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings: Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance: Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation

    Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    Get PDF
    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusion

    Insulin-like signalling to the maternal germline controls progeny response to osmotic stress

    Get PDF
    In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology and that parental stress can contribute to progeny disorders. The mechanisms regulating these phenomena are poorly understood. We report that the nematode Caenorhabditis elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes

    The Effect of ACACB cis-Variants on Gene Expression and Metabolic Traits

    Get PDF
    Acetyl Coenzyme A carboxylase β (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults.ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs.ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10(-5), dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = -0.35, p = 0.0002).Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population

    The Use of Biomaterials in Islet Transplantation

    Get PDF
    Pancreatic islet transplantation is a therapeutic option to replace destroyed β cells in autoimmune diabetes. Islets are transplanted into the liver via the portal vein; however, inflammation, the required immunosuppression, and lack of vasculature decrease early islet viability and function. Therefore, the use of accessory therapy and biomaterials to protect islets and improve islet function has definite therapeutic potential. Here we review the application of niche accessory cells and factors, as well as the use of biomaterials as carriers or capsules, for pancreatic islet transplantation

    Vererbung von Merkmalen außerhalb der primären Sequenz der DNA.

    No full text
    Epigenetics is the mitotic or meiotic inheritance of acquired traits that are not encoded in the primary DNA sequence. On a molecular level, the epigenetic code is programmed as chemical modifications of the genomic DNA or of DNA-associated histone proteins. More recently, certain RNA species were identified as additional carriers of epigenetic information. Epigenetic programming is essential for most biological processes and links environmental factors to gene expression
    • …
    corecore