64 research outputs found

    Long-distance migration and venting of methane from the base of the hydrate stability zone

    Get PDF
    \ua9 2023, The Author(s).Marine methane hydrate is an ice-like substance that is stable in sediment around marine continental margins where water depths are greater than ~450–700 m. The release of methane due to melting of hydrates is considered to be a mechanism for past global carbon-cycle perturbations and could exacerbate ongoing anthropogenic climate change. Increases in bottom-water temperature at the landward limit of marine hydrate around continental margins, where vulnerable hydrate exists at or below the seabed, cause methane to vent into the ocean. However, this setting represents only ~3.5% of the global hydrate reservoir. The potential for methane from hydrate in deeper water to reach the atmosphere was considered negligible. Here we use three-dimensional (3D) seismic imagery to show that, on the Mauritanian margin, methane migrated at least 40 km below the base of the hydrate stability zone and vented through 23 pockmarks at the shelf break, probably during warmer Quaternary interglacials. We demonstrate that, under suitable circumstances, some of the 96.5% of methane bound in deeper water distal hydrates can reach the seafloor and vent into the ocean beyond the landward limit of marine hydrate. This reservoir should therefore be considered for estimating climate change-induced methane release during a warming world

    Regional Exploration and Characterisation of CO 2 Storage Prospects in the Utsira-Skade Aquifer, North Viking Graben, North Sea

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-03-12, accepted 2021-09-03, epub 2021-10-04Publication status: PublishedSubsurface CO2 storage is considered a key element of reducing anthropogenic emissions in virtually all scenarios compatible with limiting global warming to 1.5°C. The Utsira-Skade Aquifer (Utsira, Eir and Skade Formations), northern North Sea, has been identified as a suitable reservoir. Although the overall storage capacity of the full aquifer has been estimated based on regional data, it is lacking an integrated assessment of containment and internal heterogeneity, to identify optimal areas for injection and for calculation of site-specific storage capacities. A high-resolution, broadband 3D seismic reflection dataset, full waveform inverted velocity data and 102 exploration wells are utilised to provide a catalogue of CO2 storage prospects in the northern Utsira-Skade Aquifer. This is achieved through: 1) definition of the aquifer’s spatial limits; 2) calculation of porosity distribution; 3) assessment of the extent, geomorphology, thickness variability, and containment confidence (CC) of mudstones; and 4) mapping of closures through fill-to-spill simulations. CO2 storage capacity was calculated for the prospects using two approaches; using the full reservoir thickness (FRT) beneath the closures and using only the thickness from the closure top to the spill point (TSP), i.e., within structural traps. Porosity ranges from 29 to 39% across the aquifer and is higher in the Utsira and Eir Fms. relative to the underlying Skade Fm. The mudstone separating the Skade and Eir/Utsira Fm. has a thickness > 50 m, and is a potential barrier for CO2. Other intra-aquifer mudstones were mainly interpreted to act as baffles to flow. Structural traps at the top Utsira and Skade Fms. yield fifteen prospects, with criteria of > 700 m depth and FRT storage capacity of > 5 Mt CO2. They have a combined storage capacity of 330 Mt CO2 (FRT) or 196 Mt CO2 (TSP). Five prospects have a positive CC score (total capacity: 54 Mt CO2 FRT or 39 Mt CO2 TSP). Additional storage capacity could be achieved through more detailed analysis of the seal to upgrade the CC scores, or through use of a network of the mapped closures with a fill-to-spill approach, utilising more of the aquifer

    A persistent Norwegian Atlantic Current through the Pleistocene glacials

    Get PDF
    Changes in ocean‐circulation regimes in the northern North Atlantic and the Nordic Seas may affect not only the Arctic but potentially hemispheric or even global climate. Therefore, unraveling the long‐term evolution of the North Atlantic Current‐Norwegian Atlantic Current system through the Pleistocene glaciations could yield useful information and climatological context for understanding contemporary changes. In this work, ~50,000 km2 of 3‐D seismic reflection data are used to investigate the Pleistocene stratigraphy for evidence of paleo‐oceanographic regimes on the mid‐Norwegian margin since 2.58 Ma. Across 33 semicontinuous regional paleo‐seafloor surfaces ~17,500 iceberg scours have been mapped. This mapping greatly expands our spatiotemporal understanding of currents and iceberg presence in the eastern Nordic Seas. The scours display a dominant southwest‐northeast trend that complements previous sedimentological and numerical modeling studies that suggest northward‐flowing currents in the Norwegian Sea during the Pleistocene. This paleo‐oceanographic study suggests that through many of the Pleistocene glaciations, the location of surface ocean currents in the Norwegian Sea and, by extension, the eastern North Atlantic, were broadly similar to the present

    A regional CO 2 containment assessment of the northern Utsira Formation seal and overburden, northern North Sea

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-12-31, accepted 2021-01-05, pub-electronic 2021-03-08, pub-print 2021-06Article version: VoRPublication status: PublishedFunder: Natural Environment Research Council; Id: http://dx.doi.org/10.13039/501100000270Abstract: Upscaling Carbon Capture and Storage requires identification of suitable storage sites, with robust reservoir seals. The Utsira Formation in the northern North Sea has been flagged as a target for further storage. However, there are no regional studies of seal variability addressing heterogeneities that could facilitate seal bypass. This study aims to: (a) identify, assess and map the elements that promote or restrict fluid migration, (b) develop a matrix to regionally map containment confidence (CC) and (c) rank the different areas for CO2 containment across the Utsira Formation. The seal and overburden were mapped using a high‐resolution, pre‐stack depth‐migrated 3D broadband seismic reflection dataset and 141 exploration wells. Seal geometry, sandstone presence and sandstone connectivity in the seal and overburden were assigned relative CC scores, which were summed to map overall CC of the Utsira Fm. Indicators for shallow gas and migration were mapped and correlated with the other elements. Areas with the lowest CC are in the west of the Utsira Fm. Here, sandstones within the Seal Interval are connected through the overburden via sandy submarine fans. In the southeast, dipping stratigraphy downlaps onto the Utsira Fm., increasing the potential for connection with glacially‐derived channel‐lobe systems in the overburden. The areas with the highest CC are the central and northeast parts of the Utsira Fm., where the Seal Interval is mudstone‐dominated and parallel to the reservoir, and channel‐lobe systems identified in the Overburden Interval are disconnected from the reservoir. This area coincides with a thick depocentre of the northern Utsira Fm. These results can be used to inform CO2 storage site selection and constrain future CO2 plume simulation analyses for the Utsira Fm. The CC matrix outlined here can also be adapted and applied to regionally assess the containment of other potential CO2 storage reservoirs in any setting

    Extensive marine-terminating ice sheets in Europe from 2.5 million years ago

    Get PDF
    Geometries of Early Pleistocene [2.58 to 0.78 million years (Ma) ago] ice sheets in northwest Europe are poorly constrained but are required to improve our understanding of past ocean-atmosphere-cryosphere coupling. Ice sheets are believed to have changed in their response to orbital forcing, becoming, from about 1.2 Ma ago, volumetrically larger and longer-lived. We present a multiproxy data set for the North Sea, extending to over a kilometer below the present-day seafloor, which demonstrates spatially extensive glaciation of the basin from the earliest Pleistocene. Ice sheets repeatedly entered the North Sea, south of 60°N, in water depths of up to ~250 m from 2.53 Ma ago and subsequently grounded in the center of the basin, in deeper water, from 1.87 Ma ago. Despite lower global ice volumes, these ice sheets were near comparable in spatial extent to those of the Middle and Late Pleistocene but possibly thinner and moving over slippery (low basal resistance) beds

    Seal bypass at the Giant Gjallar Vent (Norwegian Sea): indications for a new phase of fluid venting at a 56-Ma-old fluid migration system

    Get PDF
    Highlights: ‱ The Giant Gjallar Vent is still active in terms of fluid migration and faulting. ‱ The Base Pleistocene Unconformity acts as a seal to upward fluid migration. ‱ Seal bypass in at least one location leads to a new phase of fluid venting. The Giant Gjallar Vent (GGV), located in the Vþring Basin off mid-Norway, is one of the largest (~ 5 × 3 km) vent systems in the North Atlantic. The vent represents a reactivated former hydrothermal system that formed at about 56 Ma. It is fed by two pipes of 440 m and 480 m diameter that extend from the Lower Eocene section up to the Base Pleistocene Unconformity (BPU). Previous studies based on 3D seismic data differ in their interpretations of the present activity of the GGV, describing the system as buried and as reactivated in the Upper Pliocene. We present a new interpretation of the GGV’s reactivation, using high-resolution 2D seismic and Parasound data. Despite the absence of geochemical and hydroacoustic indications for fluid escape into the water column, the GGV appears to be active because of various seismic anomalies which we interpret to indicate the presence of free gas in the subsurface. The anomalies are confined to the Kai Formation beneath the BPU and the overlying Naust Formation, which are interpreted to act as a seal to upward fluid migration. The seal is breached by focused fluid migration at one location where an up to 100 m wide chimney-like anomaly extends from the BPU up to the seafloor. We propose that further overpressure build-up in response to sediment loading and continued gas ascent beneath the BPU will eventually lead to large-scale seal bypass, starting a new phase of venting at the GGV

    Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood.</p> <p>Methods</p> <p>The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS).</p> <p>The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses.</p> <p>The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer.</p> <p>Results</p> <p>In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (<it>CHKA</it>, <it>CHKB</it>) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (<it>PLA2G4A</it>) and phospholipase B1 (<it>PLB1</it>) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer.</p> <p>Conclusions</p> <p>The differences in choline metabolite concentrations corresponded well with differences in gene expression, demonstrating distinct metabolic profiles in the xenograft models representing basal-like and luminal-like breast cancer. The same characteristics of choline metabolite profiles were also observed in patient material from ER+/PgR+ and triple-negative breast cancer, suggesting that the xenografts are relevant model systems for studies of choline metabolism in luminal-like and basal-like breast cancer.</p
    • 

    corecore