97 research outputs found

    Ray-optical refraction with confocal lenslet arrays

    Get PDF
    Two parallel lenslet arrays with focal lengths f1 and f2 that share a common focal plane (that is, which are separated by a distance f1+f2) can refract transmitted light rays according to Snell's law, but with the 'sin's replaced with 'tan's. This is the case for a limited range of input angles and other conditions. Such confocal lenslet arrays can therefore simulate the interface between optical media with different refractive indices, n1 and n2, whereby the ratio η=-f2/f1 plays the role of the refractive-index ratio n2/n1. Suitable choices of focal lengths enable positive and negative refraction. In contrast to Snell's law, which leads to nontrivial geometric imaging by a planar refractive-index interface only for the special case of n1=±n2, the modified refraction law leads to geometric imaging by planar confocal lenslet arrays for any value of η. We illustrate some of the properties of confocal lenslet arrays with images rendered using ray-tracing software

    Voltage-programmable liquid optical interface

    Get PDF
    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices

    Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays

    Get PDF
    Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers

    Optically guided mode study of nematic liquid crystal alignment on a zero-order grating

    Get PDF
    B. T. Hallam and J. Roy Sambles, Physical Review E, Vol. 61, pp. 6699-6704 (2000). "Copyright © 2000 by the American Physical Society."The characterization of a liquid crystal cell, which comprises one zero-order (that is, at the wavelength of study it is nondiffractive) diffraction grating and one rubbed polyimide-coated substrate, has been performed using an optically guided mode technique. The cell is filled with nematic liquid crystal E7 (manufactured and sold by Merck, Poole, U.K.). The excitation of fully leaky guided modes within the liquid crystal layer has allowed the optical director profile to be quantified under the application of weak in-plane electric fields. The fitting of angle-dependent optical data to multilayer optical theory yields the accurate twist profile of the liquid crystal for different field strengths. Comparisons with profiles predicted from elastic continuum theory, assuming a Rapini-Papoular-type anchoring at the surfaces, allow both the azimuthal anchoring strength at each surface and the twist elastic constant of the bulk to be accurately determined. Repeating these measurements as a function of temperature allows the surface and bulk order parameters of the grating-aligned liquid crystal to be deduced

    Flat photonic bands in guided modes of textured metallic microcavities

    Get PDF
    M. G. Salt and William L. Barnes, Physical Review B, Vol. 61, pp. 11125-11135 (2000). "Copyright © 2000 by the American Physical Society."A detailed experimental study of how wavelength-scale periodic texture modifies the dispersion of the guided modes of λ/2 metal-clad microcavities is presented. We first examine the case of a solid-state microcavity textured with a single, periodic corrugation. We explore how the depth of the corrugation and the waveguide thickness affect the width of the band gap produced in the dispersion of the guided modes by Bragg scattering off the periodic structure. We demonstrate that the majority of the corrugation depths studied dramatically modify the dispersion of the lowest-order cavity mode to produce a series of substantially flat bands. From measurements of how the central frequency of the band gap varies with direction of propagation of the guided modes, we determine a suitable two-dimensional texture profile for the production of a complete band gap in all directions of propagation. We then experimentally examine band gaps produced in the guided modes of such a two-dimensionally textured microcavity and demonstrate the existence of a complete band gap for all directions of propagation of the lowest-order TE-polarized mode. We compare our experimental results with those from a theoretical model and find good agreement. Implications of these results for emissive microcavity devices such as light-emitting diodes are discussed

    Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression

    Get PDF
    Aims/hypothesis: The thiazolidinedione (TZD) rosiglitazone is a peroxisome proliferator-activated receptor-¿ agonist that induces adipocyte differentiation and, hence, lipid accumulation. This is in apparent contrast to the long-term glucose-lowering, insulin-sensitising effect of rosiglitazone. We tested whether the action of rosiglitazone involves specific effects on mature adipocytes, which are different from those on preadipocytes. Materials and methods: Differentiated mature 3T3-L1 adipocytes were used as an in vitro model. Transcriptomics, proteomics and assays of metabolism were applied to assess the effect of rosiglitazone in different insulin and glucose conditions. Results: Rosiglitazone does not induce an increase, but rather a decrease in the lipid content of mature adipocytes. Analysis of transcriptome data, confirmed by quantitative RT-PCR and measurements of lipolysis, indicates that an altered energy metabolism may underlie this change. The pathway analysis shows a consistent picture dominated by lipid catabolism. In addition, we confirmed at both mRNA level and protein level that rosiglitazone represses adipokine expression and production, except for genes encoding adiponectin and apolipoprotein E. Moreover, transcriptome changes indicate that a general repression of genes encoding secreted proteins occurs. Conclusions/ interpretation: Our findings suggest that the change of adiposity as seen in vivo reflects a shift in balance between the different effects of TZDs on preadipocytes and on mature adipocytes, while the changes in circulating adipokine levels primarily result from an effect on mature adipocyte

    Transgenic Expression of Nonclassically Secreted FGF Suppresses Kidney Repair

    Get PDF
    FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs

    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

    Get PDF
    In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.</p

    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

    Get PDF
    In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem\u27s carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers
    corecore