5 research outputs found

    TOI-1338 : TESS' first transiting circumbinary planet

    Get PDF
    Funding: Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. W.F.W. and J.A.O.thank John Hood Jr. for his generous support of exoplanet research at SDSU. Support was also provided and acknowledged through NASA Habitable Worlds grant 80NSSC17K0741 and NASA XRP grant 80NSSC18K0519. This work is partly supported by NASA Habitable Worlds grant 80NSSC17K0741. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant No.(DGE-1746045). A.H.M.J.T. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 803193/BEBOP) and from a Leverhulme Trust Research Project grant No. RPG-2018-418. A.C. acknowledges support by CFisUC strategic project (UID/FIS/04564/2019).We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M⊙ and 0.3 M⊙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations—a common signature of transiting CBPs. Its orbit is nearly circular (e ≍ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.Publisher PDFPeer reviewe

    TOI-4562b: A Highly Eccentric Temperate Jupiter Analog Orbiting a Young Field Star

    No full text
    We report the discovery of TOI-4562b (TIC-349576261), a Jovian planet orbiting a young F7V-type star, younger than the Praesepe/Hyades clusters (<700 Myr). This planet stands out because of its unusually long orbital period for transiting planets with known masses ( P _orb = 225.11781 0.00022+0.00025{}_{-0.00022}^{+0.00025} days) and because it has a substantial eccentricity ( e = 0.76 0.02+0.02{}_{-0.02}^{+0.02} ). The location of TOI-4562 near the southern continuous viewing zone of TESS allowed observations throughout 25 sectors, enabling an unambiguous period measurement from TESS alone. Alongside the four available TESS transits, we performed follow-up photometry using the South African Astronomical Observatory node of the Las Cumbres Observatory and spectroscopy with the CHIRON spectrograph on the 1.5 m SMARTS telescope. We measure a radius of 1.118+0.0130.014{1.118}_{+0.013}^{-0.014} R _J and a mass of 2.30 0.47+0.48{}_{-0.47}^{+0.48} M _J for TOI-4562b. The radius of the planet is consistent with contraction models describing the early evolution of the size of giant planets. We detect tentative transit timing variations at the ∼20 minutes level from five transit events, favoring the presence of a companion that could explain the dynamical history of this system if confirmed by future follow-up observations. With its current orbital configuration, tidal timescales are too long for TOI-4562b to become a hot Jupiter via high-eccentricity migration though it is not excluded that interactions with the possible companion could modify TOI-4562b’s eccentricity and trigger circularization. The characterization of more such young systems is essential to set constraints on models describing giant-planet evolution
    corecore