520 research outputs found

    On population abundance and niche structure

    Get PDF
    Recent published evidence indicates a negative correlation between density of populations and the distance of their environments to a suitably defined ‘niche centroid’. This empirical observation lacks theoretical grounds. We provide a theoretical underpinning for the empirical relationship between population density and position in niche space, and use this framework to understand the circumstances under which the relationship will fail. We propose a metapopulation model for the area of distribution, as a system of ordinary differential equations coupled with a dispersal kernel. We present an analytical approximation to the solution of the system as well as R code to solve the full model numerically. We use this tool to analyze various scenarios and assumptions. General and realistic demographic assumptions imply a good correlation between position in niche space and population abundance. Factors that modify this correlation are: transitory states, a heterogeneous spatial structure of suitability, and Allee effects. We also explain why the raw output of the niche modeling algorithm MaxEnt is not a good predictor of environmental suitability. Our results elucidate the empirical results for spatial patterns of population size in niche terms, and provide a theoretical basis for a structured theory of the niche

    Insights from Australians with respiratory disease living in the community with experience of self-managing through an emergency department 'near miss' for breathlessness: A strengths-based qualitative study

    Get PDF
    © 2017 Article author(s). Objectives: Breathlessness 'crises' in people with chronic respiratory conditions are a common precipitant for emergency department (ED) presentations, many of which might be avoided through improved self-management and support. This study sought insights from people with experience of ED 'near misses' where they considered going to the ED but successfully self-managed instead. Design and methods: A qualitative approach was used with a phenomenological orientation. Participants: were eligible if they reported breathlessness on most days from a diagnosed respiratory condition and experience of ≥1 ED near miss. Recruitment was through respiratory support groups and pulmonary rehabilitation clinics. Semistructured interviews were conducted with each participant via telephone or face-to-face. Questions focused on ED-related decision-making, information finding, breathlessness management and support. This analysis used an integrative approach and independent coding by two researchers. Lazarus and Cohen's Transactional Model of Stress and Coping informed interpretive themes. Results: Interviews were conducted with 20 participants, 15 of whom had chronic obstructive pulmonary disease. Nineteen interviews were conducted via telephone. Analysis identified important factors in avoiding ED presentation to include perceived control over breathlessness, self-efficacy in coping with a crisis and desire not to be hospitalised. Effective coping strategies included: taking a project management approach that involved goal setting, monitoring and risk management; managing the affective dimension of breathlessness separately from the sensory perceptual and building three-way partnerships with primary care and respiratory services. Conclusions: In addition to teaching non-pharmacological and pharmacological management of breathlessness, interventions should aim to develop patients' generic self-management skills. Interventions to improve self-efficacy should ensure this is substantiated by transfer of skills and support, including knowledge about when ED presentation is necessary. Complementary initiatives are needed to improve coordinated, person-centred care. Future research should seek ways to break the cyclical relationship between affective and sensory-perceptual dimensions of breathlessness

    Theory of Bose-Einstein condensation in trapped gases

    Full text link
    The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references, new figures, various changes and corrections, for publ. in Rev. Mod. Phys., available also at http://www-phys.science.unitn.it/bec/BEC.htm

    Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability

    Get PDF
    Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu–Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de-novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized

    Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training

    Get PDF
    Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production

    Growth Differentiation Factor 9 (GDF9) Suppresses Follistatin and Follistatin-Like 3 Production in Human Granulosa-Lutein Cells

    Get PDF
    We have demonstrated that growth differentiation factor 9 (GDF9) enhances activin A-induced inhibin β(B)-subunit mRNA levels in human granulosa-lutein (hGL) cells by regulating receptors and key intracellular components of the activin signaling pathway. However, we could not exclude its effects on follistatin (FST) and follistatin-like 3 (FSTL3), well recognized extracellular inhibitors of activin A.hGL cells from women undergoing in vitro fertilization (IVF) treatment were cultured with and without siRNA transfection of FST, FSTL3 or GDF9 and then treated with GDF9, activin A, FST, FSTL3 or combinations. FST, FSTL3 and inhibin β(B)-subunit mRNA, and FST, FSTL3 and inhibin B protein levels were assessed with real-time RT-PCR and ELISA, respectively. Data were log transformed before ANOVA followed by Tukey's test.GDF9 suppressed basal FST and FSTL3 mRNA and protein levels in a time- and dose-dependent manner and inhibited activin A-induced FST and FSTL3 mRNA and protein expression, effects attenuated by BMPR2 extracellular domain (BMPR2 ECD), a GDF9 antagonist. After GDF9 siRNA transfection, basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9. Reduced endogenous FST or FSTL3 expression with corresponding siRNA transfection augmented activin A-induced inhibin β(B)-subunit mRNA levels as well as inhibin B levels (P values all <0.05). Furthermore, the enhancing effects of GDF9 in activin A-induced inhibin β(B)-subunit mRNA and inhibin B production were attenuated by adding FST.GDF9 decreases basal and activin A-induced FST and FSTL3 expression, and this explains, in part, its enhancing effects on activin A-induced inhibin β(B)-subunit mRNA expression and inhibin B production in hGL cells
    corecore