48 research outputs found

    Use of continuous positive airway pressure reduces airway reactivity in adults with asthma

    Get PDF
    Asthma is characterised by airway hyperreactivity, which is primarily treated with ÎČ-adrenergic bronchodilators and anti-inflammatory agents. However, mechanical strain during breathing is an important modulator of airway responsiveness and we have previously demonstrated in animal models that continuous positive airway pressure (CPAP) resulted in lower in vivo airway reactivity. We now evaluated whether using nocturnal CPAP decreased airway reactivity in clinically-stable adults with asthma. Adults with stable asthma and normal spirometry used nocturnal CPAP (8-10 cmH(2)O) or sham treatment (0-2 cmH(2)O) for 7 days. Spirometry and bronchial challenges were obtained before and after treatment. The primary outcome was the provocative concentration of methacholine causing a 20% fall in forced expiratory volume in 1 s (PC(20)). The CPAP group (n=16) had a significant decrease in airway reactivity (change in (Δ)logPC(20) 0.406, p<0.0017) while the sham group (n=9) had no significant change in airway reactivity (ΔlogPC(20) 0.003, p=0.9850). There was a significant difference in the change in airway reactivity for the CPAP versus the sham group (ΔlogPC(20) 0.41, p<0.043). Our findings indicate that chronic mechanical strain of the lungs produced using nocturnal CPAP for 7 days reduced airway reactivity in clinically stable asthmatics. Future studies of longer duration are required to determine whether CPAP can also decrease asthma symptoms and/or medication usage

    Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate

    Get PDF
    The CLAW hypothesis argues that a negative feedback mechanism involving phytoplankton- derived dimethylsulfoniopropionate (DMSP) could mitigate increasing sea surface temperatures that result from global warming. DMSP is converted to the climatically active dimethylsulfide (DMS), which is transferred to the atmosphere and photochemically oxidized to sulfate aerosols, leading to increases in planetary albedo and cooling of the Earth’s atmosphere. A shipboard incubation experiment was conducted to investigate the effects of increased temperature and pCO2 on the algal community structure of the North Atlantic spring bloom and their subsequent impact on particulate and dissolved DMSP concentrations (DMSPp and DMSPd). Under ‘greenhouse’ conditions (elevated pCO2; 690 ppm) and elevated temperature (ambient + 4°C), coccolithophorid and pelagophyte abundances were significantly higher than under control conditions (390 ppm CO2 and ambient temperature). This shift in phytoplankton community structure also resulted in an increase in DMSPp concentrations and DMSPp:chl a ratios. There were also increases in DMSP-lyase activity and biomass-normalized DMSP-lyase activity under ‘greenhouse’ conditions. Concentrations of DMSPd decreased in the ‘greenhouse’ treatment relative to the control. This decline is thought to be partly due to changes in the microzooplankton community structure and decreased grazing pressure under ‘greenhouse’ conditions. The increases in DMSPp in the high temperature and greenhouse treatments support the CLAW hypothesis; the declines in DMSPd do not

    Toxic Substances in Articles: The Need for Information

    No full text
    The use of toxic chemicals in articles is a growing concern for public health and the environment. International trade results in substances being transported among regions. From toys and household items to electronic equipment and automobiles, toxic substances in articles are an increasingly important factor contributing to the global burden of toxic substances. Toxic substances in articles may pose threats at every stage of the product life cycle - production, use, and disposal or recycling. In this report, we consider a factor that is critical for the sound management of substances in articles: the availability of information. At present, there is no global system for provision of information about substances in a wide range of articles. First, the report describes the problem of toxic substances in articles, with detailed case studies of selected examples and considers the advantages that would result from better information management systems. Second, the report considers existing efforts to generate and disseminate information about substances in articles, both regulatory requirements and voluntary initiatives. Third, the report offers suggestions as to the questions and themes that would need to be considered in order to improve management of information about substances in articles

    Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia

    Get PDF
    ObjectiveThe purpose of this Phase I open label nonrandomized trial was to assess the safety and efficacy of autologous bone marrow mononuclear cell (ABMNC) therapy in promoting amputation-free survival (AFS) in patients with critical limb ischemia (CLI).MethodsBetween September 2005 and March 2009, 29 patients (30 limbs), with a median age of 66 years (range, 23-84 years; 14 male, 15 female) with CLI were enrolled. Twenty-one limbs presented with rest pain (RP), six with RP and ulceration, and three with ulcer only. All patients were not candidates for surgical bypass due to absence of a patent artery below the knee and/or endovascular approaches to improving perfusion was not possible as determined by an independent vascular surgeon. Patients were treated with an average dose of 1.7 ± 0.7 × 109 ABMNC injected intramuscularly in the index limb distal to the anterior tibial tuberosity. The primary safety end point was accumulation of serious adverse events, and the primary efficacy end point was AFS at 1 year. Secondary end points at 12 weeks posttreatment were changes in first toe pressure (FTP), toe-brachial index (TBI), ankle-brachial index (ABI), and transcutaneous oxygen measurements (TcPO2). Perfusion of the index limb was measured with positron emission tomography-computed tomography (PET-CT) with intra-arterial infusion of H2O15. RP, using a 10-cm visual analogue scale, quality of life using the VascuQuol questionnaire, and ulcer healing were assessed at each follow-up interval. Subpopulations of endothelial progenitor cells were quantified prior to ABMNC administration using immunocytochemistry and fluorescent-activated cell sorting.ResultsThere were two serious adverse events; however, there were no procedure-related deaths. Amputation-free survival at 1 year was 86.3%. There was a significant increase in FTP (10.2 ± 6.2 mm Hg; P = .02) and TBI (0.10 ± 0.05;P = .02) and a trend in improvement in ABI (0.08 ± 0.04; P = .73). Perfusion index by PET-CT H2O15 increased by 19.3 ± 3.1, and RP decreased significantly by 2.2 ± 0.6 cm (P = .02). The VascuQol questionnaire demonstrated significant improvement in quality of life, and three of nine ulcers (33%) healed completely. KDR+ but not CD34+ or CD133+ subpopulations of ABMNC were associated with improvement in limb perfusion.ConclusionThis Phase I study has demonstrated safety, and the AFS rates suggest efficacy of ABMNC in promoting limb salvage in “no option” CLI. Based on these results, we plan to test the concept that ABMNCs improve AFS at 1 year in a Phase III randomized, double-blinded, multicenter trial

    Pre-Clinical Study Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Neuroblastoma

    No full text
    Background: Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). Methods: Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. Results: Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. Conclusions: PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma

    Pre-Clinical Study Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Neuroblastoma

    No full text
    Background: Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). Methods: Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. Results: Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. Conclusions: PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma
    corecore