65 research outputs found

    The Relationship between Goal Orientation and Gender Roles

    Get PDF
    This study was designed to examine the relationship between a person’s goal orientation and the gender roles that they adopt. The relationship between gender and goal orientation has been studied for years, but the results have been inconclusive. Some studies find a gender difference and some studies do not. For this reason, this study examined if there was another factor that was influencing goal orientations that was related to gender. Goal orientations are perceptual-cognitive frameworks for how individuals approach, interpret, and respond to achievement situations. Gender roles are the behaviors, thoughts, and emotions that are considered acceptable and appropriate for each gender based on society and culture. Four hundred and seventy two participants answered an online questionnaire assessing their goal orientation and gender role identification. The participants answered questions using the Patterns of Adaptive Learning Scale and the Bem’s Sex Role Inventory. Overall, the results showed that higher masculinity leads to a higher motivation to succeed, and higher femininity leads to a higher motivation to avoid failure

    Functional MRI Assessment of Renal Fibrosis in Rat Models

    Get PDF
    poster abstractIntroduction Renal fibrosis is a common consequence of chronic kidney diseases which affects a large population. Therefore, it is important to establish imaging based noninvasive biomarkers to monitor the progression or regression of renal fibrosis instead of biopsy. Magnetic resonance imaging (MRI) could provide both high spatial resolution and excellent tissue contrast for visualization of kidney morphology. Moreover, MRI is capable of assessing pseudo perfusion (Df) and perfusion fraction (Pf) with intra-voxel incoherent motion (IVIM) imaging (1), tissue oxygenation with T2* mapping (2), macromolecular composition with T1rho imaging (3) and kidney function (eGFR) with dynamic contrast enhanced (DCE) imaging (4). This study is aimed to evaluate the sensitivity of these MRI techniques to the renal fibrotic changes in a rat model. Methods A total of 4 rats were scanned at early (2-5 days) and late (25-35 days) time points after surgical intervention (unilateral ureteral obstruction to induce renal fibrosis) on a Siemens Tim Trio 3T scanner using an 80mm inner diameter 8-channel rat body coil (RAPID, USA) under a stable anesthetized condition. Axial images of 80mm FOV, 2mm slice thick and sub-millimeter in-place resolution were acquired for different functional MRI techniques with following parameters, respectively: IVIM with10 b-values of 0 - 750 s/mm2. T2*: with 10 TEs of 8 - 66 ms; T1rho: with 9 TSL times of 5 - 80 ms; DCE: with150 dynamic measurements at a temporal resolution of 1.01 s. before and after a 15s injection of 1.1 ml GD-DTPA through rat tail with a power injector. Functional data were processed and analyzed using custom MATLAB programs or analysis tools installed in the MRI console workstation. Results Figure 1 shows an anatomical image of the obstructed (R) and healthy (L) rat kidneys. Figures 2-4 show example T1rho map, IVIM Df map, and T2* map, respectively. Quantitative results based on ROI measurements are summarized in table 1. Changes consistent with the expected progression of fibrosis were observed in the obstructed kidney (R) while the healthy kidney (L) and muscle region remained stable. Figure 5 shows the DCE-MRI images at baseline as well as 45s, 95s and 240s after contrast infusion. The timing and intensity of signal changes are clearly different between two kidneys. Quantitative results of DCE-MRI data and comparison with PET study is reported in a separate abstract. Discussion High quality anatomical and functional images of rat kidney can be obtained on a clinical 3.0T MR scanner with dedicated small animal coils and optimized imaging techniques. The findings suggest that IVIM, T2*, T1rho and DCE can be used to assess and monitor different aspects of physiological changes in kidney fibrosis

    Magnetic Resonance Diffusion Tensor Imaging and Diffusion Compartmental Modeling in an Animal Model of Chronic Kidney Disease

    Get PDF
    poster abstractPurpose: According to National Health and Nutrition Examination Survey (NHANES), Chronic Kidney Disease (CKD) affects 25% of the US population over age 601. Renal fibrosis, a common pathological consequence of CKD, is a progressive process that ultimately leads to end-stage renal failure that requires dialysis or kidney transplantation2. There is a compelling need for non-invasive biomarkers that track changes in the tissue microenvironment associated with CKD. Several studies using magnetic resonance diffusion tensor imaging (DTI) have been proposed as imaging biomarkers for CKD3. In this study, in addition to DTI, we explored a diffusion-compartmental modeling technique4 to study the microstructures of hypoxia induced animal models of CKD. Method: Preparation of the animal CKD model: Experiments were performed in 4 Wistar Rats using protocols approved by the Institutional Animal Care and Use Committee (IACUC). Two days prior to the first magnetic resonance imaging (MRI) scan; surgical intervention in right renal artery was performed in all the animals to create hypoxia induced renal fibrosis. The MRI scans were repeated at an interval of approximately one month. During the imaging session, the rats were sedated and kept in head-first supine position. MRI imaging: The MRI diffusion pulse sequence was a single-shot spin-echo echo-planar imaging (SS-SE-EPI) sequence with multiple diffusion-weighting b-values (i.e. 3 shells with b-values of 150, 300 and 450 s/mm2) and multiple diffusion-weighting directions at each shell (i.e., 10, 19 and 30, respectively). Diffusion directions in each shell and in the projected sphere with all directions (i.e., total 59) were optimized for uniform diffusion sampling in the spherical space5. The repetition time (TR) is 2200 ms and echo time (TE) is 73.6 ms. A total of four signal averages was performed. The imaging parameters were field-of-view (FOV) = 128 x 64 mm, matrix size = 128 x 64, isotropic voxel size of 1 mm3, and 20 oblique coronal slices. Image data processing: DTI derived parameters including axial diffusivity (Da), radial diffusivity (Dr), mean diffusivity (MD), and fractional anisotropy (FA) were computed6. The diffusion compartmental model originally proposed for the brain called neutrite orientation dispersion and density imaging (NODDI)4 was modified to fit the water diffusivities of kidneys. The NODDI model with Watson stick framework produces the volume fraction of stick like diffusion compartment that may explain the active diffusion (transport) of water in the interstitial space between renal tubules, ellipsoid like diffusion compartment that may explain diffusion inside renal tubule, and a fast isotropic diffusion to account for the pseudo-diffusion term relating to bulk vascular flow. The normalized diffusion intensity was fit with a non-linear mathematical model given by A = (1-Viso) (VicAic+(1-Vic) Aec) + VisoAiso ; where Vic and Viso are the volume fraction of active water transport and free diffusion compartments in the kidney, respectively. Aic, Aec and Aiso are the normalized diffusion signal contribution from stick, tubule and free diffusion compartments, respectively. In the raw DW data, the b-value=0 volume clearly shows three distinct layers in the rat kidney representing the inner medulla, outer medulla and cortex (Figure1). Non-overlapping ROI's were constructed from the b-value =0 images. Figure 1: The DTI and Diffusion compartmental modeling parameter for RAT Kidney 2 days after surgical intervention. The Cortex (C), the Outer Medulla (OM) and Inner Medulla (IM) are shown in raw b0 maps. The orientation of the images follows radiology convention. Results: On post-surgical day 2, the overall water diffusivity (i.e., mean diffusivity (MD)) decreased significantly in the outer medullae and inner medullae of the surgical kidneys (Figure 2 B green bars). In the compartmental model, the volume fraction of the stick (interstitial) diffusion compartment (Vic) in right outer and inner medulla was significantly increased compared to the left (Figure 2A blue bars), whereas the volume fraction of water diffusion inside the tubules (Vec = (1-Vic)) decreased significantly. In addition, isotropic free diffusion compartment (Viso) was significantly lower in the inner medullae of the right kidneys. The axial diffusivity (Da) that may describe the diffusion parallel to the tubules decreased significantly in outer and inter medullae of the right surgical kidneys (Figure 2 B blue bars). The radial diffusivity (Dr) that may describe the water diffusion perpendicularly to the renal tubules decreased significantly in only the outer medullae of the right kidneys (Figure 2B gray bars). While FA shows high value in the inner medullae for both left and right kidneys, no significant results were found between left and right kidneys and between two time points. Over the one-month period of time, right inner medullae continued the significant changes in the diffusivity measurements (Figure 2C and D, right groups), but the diffusivities remained similar in the outer medullae (Figure 2 C and D, middle groups). No significant findings were found in the renal cortices between the right and left kidneys on post-surgical day 2 (Figure 2 A and B). Interestingly, the right renal cortices did have significant increase in Vic and decreases in Da, Dr, and MD over the one-month time period (Figure 2 C and D). Figure 2: Diffusion Compartmental (Figure 2A) and DTI (Figure 2B) parameters for Right Cortex (RC) and Left Cortex (LC), Right Outer Medulla (ROM) and Left Outer Medulla (LOM) and Right Inner Medulla (RIM) and Left Inner Medulla (LIM) on post-surgical day 2. (Figure 2C) Is the time series study of diffusion compartmental parameters and (Figure 2D) for DTI parameters for the right kidneys at post-surgical day 2 and 30, respectively. The bars represent diffusion measurements of all four rats. The overhead connecting lines represent significant statistical student t-test with p-value < 0.01. Discussions and Conclusion: The DTI and NODDI analogous diffusion compartment derived parameters are sensitive to the micro-structural changes in kidneys after surgical hypoxia intervention. The outer and inner medullae appear most sensitive to the surgical hypoxia intervention as early as post-surgical day 2. The preliminary result suggests that water diffusion decreases due to renal fibrosis, and more so inside the Henle tubules. In post-surgical day 30, renal cortices start to show changes in water diffusivities while inner medullae continue pathological changes. The NODDI compartmental model shows promising preliminary results in revealing renal microenvironments under the influences of hypoxia induced renal fibrosis. Further study is required to optimize and validate the model

    In vivo UTE-MRI reveals positive effects of raloxifene on skeletal bound water in skeletally mature beagle dogs

    Get PDF
    Raloxifene positively affects mechanical properties of the bone matrix in part through modification of skeletal bound water. The goal of this study was to determine if raloxifene induced alterations in skeletal hydration could be measured in vivo using ultra-short echotime magnetic resonance imaging (UTE-MRI). Twelve skeletally mature female beagle dogs (n=6/group) were treated for 6 months with oral doses of saline vehicle (VEH, 1 ml/kg/day) or raloxifene (RAL, 0.5 mg/kg/day). Following six months of treatment, all animals underwent in vivo UTE-MRI of the proximal tibial cortical bone. UTE-MRI signal intensity versus echotime curves were analyzed by fitting a double exponential to determine the short and long relaxation times of water with the bone (dependent estimations of bound and free water, respectively). Raloxifene-treated animals had significantly higher bound water (+14%; p = 0.05) and lower free water (-20%) compared to vehicle-treated animals. These data provide the first evidence that drug-induced changes in skeletal hydration can be non-invasively assessed using UTE-MRI.Funding for this study was provided by NIH (AR 62002 and a BIRT supplement). Raloxifene was provided by through an MTA with Eli Lilly

    Characterization of 11C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation

    Get PDF
    The purinergic receptor subtype 7 (P2X7R) represents a novel molecular target for imaging neuroinflammation via PET. GSK1482160, a potent P2X7R antagonist, has high receptor affinity, high blood–brain barrier penetration, and the ability to be radiolabeled with 11C. We report the initial physical and biologic characterization of this novel ligand. Methods: 11C-GSK1482160 was synthesized according to published methods. Cell density studies were performed on human embryonic kidney cell lines expressing human P2X7R (HEK293-hP2X7R) and underwent Western blotting, an immunofluorescence assay, and radioimmunohistochemistry analysis using P2X7R polyclonal antibodies. Receptor density and binding potential were determined by saturation and association–disassociation kinetics, respectively. Peak immune response to lipopolysaccharide treatment in mice was determined in time course studies and analyzed via Iba1 and P2X7R Western blotting and Iba1 immunohistochemistry. Whole-animal biodistribution studies were performed on saline- or lipopolysaccharide-treated mice at 15, 30, and 60 min after radiotracer administration. Dynamic in vivo PET/CT was performed on the mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking, and 2-compartment, 5-parameter tracer kinetic modeling of brain regions was performed. Results: P2X7R changed linearly with concentrations or cell numbers. For high-specific-activity 11C-GSK1482160, receptor density and Kd were 1.15 ± 0.12 nM and 3.03 ± 0.10 pmol/mg, respectively, in HEK293-hP2X7R membranes. Association constant kon, dissociation constant koff, and binding potential (kon/koff) in HEK293-hP2X7R cells were 0.2312 ± 0.01542 min−1⋅nM−1, 0.2547 ± 0.0155 min−1, and 1.0277 ± 0.207, respectively. Whole-brain Iba1 expression in lipopolysaccharide-treated mice peaked by 72 h on immunohistochemistry, and Western blot analysis of P2X7R for saline- and lipopolysaccharide-treated brain sections showed a respective 1.8- and 1.7-fold increase in signal enhancement at 72 h. Biodistribution of 11C-GSK1482160 in saline- and lipopolysaccharide-treated mice at 72 h was statistically significant across all tissues studied. In vivo dynamic 11C-GSK1482160 PET/CT of mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking showed a 3.2-fold increase and 97% blocking by 30 min. The total distribution volumes for multiple cortical regions and the hippocampus showed statistically significant increases and were blocked by an excess of authentic standard GSK1482160. Conclusion: The current study provides compelling data that support the suitability of 11C-GSK1482160 as a radioligand targeting P2X7R, a biomarker of neuroinflammation

    The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation

    Get PDF
    Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation

    Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan

    Get PDF
    Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR), robustly extends the lifespan of model organisms including mice. We recently found that chronic treatment with rapamycin not only inhibits mTOR complex 1 (mTORC1), the canonical target of rapamycin, but also inhibits mTOR complex 2 (mTORC2) in vivo. While genetic evidence strongly suggests that inhibition of mTORC1 is sufficient to promote longevity, the impact of mTORC2 inhibition on mammalian longevity has not been assessed. RICTOR is a protein component of mTORC2 that is essential for its activity. We examined three different mouse models of Rictor loss: mice heterozygous for Rictor, mice lacking hepatic Rictor, and mice in which Rictor was inducibly deleted throughout the body in adult animals. Surprisingly, we find that depletion of RICTOR significantly decreases male, but not female, lifespan. While the mechanism by which RICTOR loss impairs male survival remains obscure, we find that the effect of RICTOR depletion on lifespan is independent of the role of hepatic mTORC2 in promoting glucose tolerance. Our results suggest that inhibition of mTORC2 signaling is detrimental to males, which may explain in part why interventions that decrease mTOR signaling show greater efficacy in females

    A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    Get PDF
    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60-80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt
    • …
    corecore