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Abstract

Background: Evolving interest in comprehensively profiling the full range of small RNAs present in small tissue
biopsies and in circulating biofluids, and how the profile differs with disease, has launched small RNA sequencing
(RNASeq) into more frequent use. However, known biases associated with small RNASeq, compounded by low RNA
inputs, have been both a significant concern and a hurdle to widespread adoption. As RNASeq is becoming a
viable choice for the discovery of small RNAs in low input samples and more labs are employing it, there should
be benchmark datasets to test and evaluate the performance of new sequencing protocols and operators. In a
recent publication from the National Institute of Standards and Technology, Pine et al., 2018, the investigators
used a commercially available set of three tissues and tested performance across labs and platforms.

Results: In this paper, we further tested the performance of low RNA input in three commonly used and commercially
available RNASeq library preparation kits; NEB Next, NEXTFlex, and TruSeq small RNA library preparation. We evaluated
the performance of the kits at two different sites, using three different tissues (brain, liver, and placenta) with high
(1 μg) and low RNA (10 ng) input from tissue samples, or 5.0, 3.0, 2.0, 1.0, 0.5, and 0.2 ml starting volumes of plasma.
As there has been a lack of robust validation platforms for differentially expressed miRNAs, we also compared low
input RNASeq data with their expression profiles on three different platforms (Abcam Fireplex, HTG EdgeSeq, and
Qiagen miRNome).

Conclusions: The concordance of RNASeq results on these three platforms was dependent on the RNA expression level;
the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit
performance using low RNA input, and replication of these data on three downstream technologies.

Keywords: Small RNASeq, Low RNA input, Small RNASeq, miRNA validation, NGS, qPCR

Background
Due to their stability, clinical relevance, and functional role
in disease pathogenesis, small RNAs have the potential to
be important reporters of dysregulated cellular processes
across a range of diseases [1–3]. Their presence in biofluids
has provided researchers with a new tool for monitoring
health and disease, as these small RNAs, derived from

intracellular sources throughout the body, make their way
into circulation. RNA sequencing (RNASeq) is an attractive
tool for small RNA discovery in both tissues and biofluids
[4–6]. However, a general lack of reproducibility of miRNA
results across laboratories and platforms [7–9] has been an
area of concern when considering assays for small RNA
quantitation at the outset of an experiment. The reasons
for this lack of reproducibility can be attributed to several
potential factors [10, 11]: 1) the nature of the samples
themselves, notably differences in sample type and collec-
tion procedures, and heterogeneities in patient populations
and patient stratification, 2) differences introduced at RNA
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or extracellular vesicle isolation steps, 3) variances intro-
duced during data analysis, and 4) the inherent biases of
the utilized technology; RNASeq, qPCR, microarrays and
other assay platforms. In order to make informed choices
at the initiation of experiments involving samples with low
RNA input, we evaluated the performance of three com-
monly used RNASeq kits using commercially available
standardized RNAs. In our assessment, we compared
libraries prepared at two locations, using three different
library preparation kits, at 1 μg or at 10 ng of RNA input
(to mimic low input amounts found in biofluids). As the
validation platforms for biofluids RNA have mostly focused
on miRNAs, we then assessed the differentially-expressed
miRNAs identified by RNASeq in downstream assays.
Biological diversity in the number and types of

small RNAs present in a sample type may also play a
role in the performance of the kits and downstream
validation. It has become increasingly evident that
tRNA fragments, YRNA fragments and other species
of small RNAs are important cellular regulators and
are abundant in biofluids [6, 12–14]. Therefore, to in-
crease diversity, we used RNA isolated from three dif-
ferent tissues for comparison of low input RNA
effects in the sequencing kits: brain, liver, and pla-
centa, and one biofluid sample: plasma. Our results
demonstrate that while small RNA expression differ-
ences between the three tissues, brain, liver and pla-
centa are captured by all three small RNASeq kits
tested (Illumina TruSeq, BiooScientific NEXTFlex, and
New England Biolabs NEB Next), there are measur-
able differences between the kits in terms of RNA di-
versity. Moreover, while the inter-site variation was
minimal for the 1 μg input samples, as the input

amount was decreased to 10 ng, the effect of oper-
ator/site on the percentage of input reads mapping to
RNA became more pronounced.
Validation of differentially expressed small RNAs, on

other technologies, remains one of the most significant
hurdles to its utility and clinical implementation. We
assessed the performance of several platforms for valid-
ation of the RNASeq data, HTG EdgeSeq, Qiagen miR-
Nome and Abcam FirePlex. Not surprisingly, we found
that the performance of each platform correlated better
when the expression level and fold change between the
RNAs was larger.
As was suggested in a recent publication by Pine et

al., 2018 [15], sequence and platform data from these
samples can be used as a benchmark. These samples
can be purchased from Thermo Fisher and used to
test the overall performance of new sequencing proto-
cols, small RNA quantitation platforms and lab-to-lab
variability and operator proficiency. All of our data
are available for comparison at SRA (BioProject:
PRJNA402076).

Results
We tested three commonly used small RNA sample prep-
aration kits for next generation sequencing (TruSeq, NEB
Next, and NEXTFlex), on three different tissues (brain,
liver, and placenta), at two concentrations (1 μg and 100
fold less; 10 ng), and at two different sites (MGH and
TGen). Figure 1 shows the schematic of the study design
and the number of samples sequenced at each site for the
two input amounts. Each tissue was sequenced once with
each kit at the 1 μg RNA input. In order to test the vari-
ability of low RNA input for each of the kits, library

Fig. 1 Schematic of study design. Tissue RNA from brain, liver and placenta were sequenced at two sites at two input amounts (1 μg and 10 ng)
using three different RNA sequencing kits (Illumina TruSeq, NEB Next and BiooScientific NEXTFlex). RNA from plasma samples at 5 different input
volumes (200 μL – 5 mL) were sequenced at Site 1 using only TruSeq and BiooScientific. The green arrow depicts the flow of one of the tissue
samples – brain using NEB Next and the red arrows, the plasma samples. The RNASeq results from the tissue samples were then validated using
three different platforms (qPCR, EdgeSeq performed by Site1 and Fireplex performed by Site2). For a full list of samples sequenced, please refer to
Additional file 1: Table S1
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preparation and sequencing was performed 8–10 separate
times with 10 ng of input RNA. A summary of small
RNASeq results is presented as an average across the two
sites in Fig. 2a and b. Figure 2a displays the percentage of
input reads that align to the human transcriptome (green),
align to human rRNA (yellow), align to UniVec contami-
nants (orange), were too short after adaptor removal (< 15
nucleotides; turquoise), or did not align to the human
transcriptome (black) for each tissue type and kit respect-
ively (Fig. 2a).
The median percentage of reads aligned to the human

transcriptome (after removing rRNA) for both 10 ng and
1 μg inputs were: Illumina TruSeq 74.12% (IQR: 70.7–79.
63%), NEXTFlex 67.51% (IQR: 63.57–72.76%) and NEB
Next 60.03% (IQR: 52.58–71.78%). Although there is no ap-
preciable difference in the percentage of reads that were
unmapped to the human transcriptome (~ 6.5%) and to
UniVec contaminants (< 0.5%) across all three kits, the per-
centage of reads that mapped to human rRNA was signifi-
cantly different (Illumina TruSeq – Median: 13.34%; IQR:
10.23–18.26%, NEXTFlex – Median: 9.5%; IQR: 7.23–11.
21%, NEB Next – Median: 24.27%; IQR: 14.4–29.37%). The
NEXTFlex kit had the highest percentage of reads that were
too short (Median: 13.77%, IQR: 10.34–19.76%). A detailed
sample list with the percentage of reads in each category
can be found in Additional file 1: Table S1 and p-values cal-
culated by Wilcoxon two-sided rank sum test with continu-
ity correction for pairwise comparisons between the three
kits is presented in Additional file 1: Table S2.

Reads mapped to the human transcriptome were fur-
ther examined and the RNA categories/biotypes they
mapped to are displayed in Fig. 2b for each tissue type
and kit respectively. The most abundant RNA biotype in
the placenta and brain samples is miRNA and in the
liver samples, it is tRNA fragments (tRFs). Reads that
mapped to tRFs predominantly arise from the 5 prime
ends of tRNAs. Although all kits found a high represen-
tation of tRFs in the liver samples, Illumina TruSeq mea-
sured almost twice as many tRFs (TruSeq – Median: 69.
48; IQR: 60.47–75.18, NEXTFlex – Median: 38.72; IQR:
35.56–44.7, NEB Next – Median: 32; IQR: 29.71–38.7).
The NEXTFlex kit, with its 4 N adaptors, consistently
had the highest number and diversity of reads assigned
to miRNAs for all three tissues and input amounts [16,
17]. A Wilcoxon two-sided rank sum test between the
three kits for the percentages assigned to the different
RNA biotypes identified statistically significant differ-
ences between the tRNAs and miRNAs (Additional file
1: Table S4). The average for the miRNAs and tRFs ac-
count for 83, 81 and 78% of the reads mapped to the
transcriptome for NEXTFlex, TruSeq and NEB Next re-
spectively. The next most abundant RNA biotype is
YRNAs that comprise, on average 6, 4 and 8% assigned
to the three kits respectively. The light green bars at the
top of Fig. 2b, depicted as ‘Reads_shared’, constitute
reads that map to more than one biotype or position in
the human transcriptome. These account for, on average,
5% of the reads for NEXTFlex, 7% for TruSeq and 8%

a b

Fig. 2 Distribution of total input reads and reads mapped to the transcriptome for liver (L), placenta (P) and brain (B). a Average percentage of input
reads for each tissue and kit for the two input amounts (10 ng – top panel; 1 μg – bottom panel) aligned to the human transcriptome (hg19), UniVec
contaminants, human rRNA, reads that were too short (< 15nts), and unaligned to the human transcriptome. b Average percentage of reads mapped to the
human transcriptome to RNA biotypes for each tissue and kit for the two input amounts (10 ng – top panel; 1 μg – bottom panel): miRNA, tRNA, piRNA, YRNA,
snoRNA, snRNA, protein-coding fragments, lincRNA (long intergenic non-coding RNA), antisense RNA, Mt_tRNA (mitochondrial tRNA), MT_rRNA (mitochondrial
rRNA), oncRNA (other non coding RNA), miRNA hairpins, reads that are shared between multiple RNA biotypes and reads that are unassigned
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for the NEB Next kit. A detailed sample list with the
percentage of reads for each RNA biotype can be found
in Additional file 1: Table S3 and p-values calculated by
Wilcoxon two-sided rank sum test with continuity cor-
rection for pairwise comparisons between the three kits
is presented in Additional file 1: Table S4.

Effect of input amount
The effect of lowering the input amount of RNA 100
fold, from 1 μg to 10 ng, approximately doubled the per-
centage of reads that are categorized as too short (< 15
nts) for NEXTFlex (7 to 14%) and NEB Next (4 to 8%),
while remained unchanged for TruSeq (2%) (Fig. 2a top
panel versus bottom panel, Additional file 1: Table S5).
The difference in the percentage of reads mapping to
UniVec contaminants, although statistically significant
for the NEXTFlex kit is still less than 0.5%. Median
values of the percentage of reads assigned along with
comparisons between the 1 μg and 10 ng input amounts
are presented in Additional file 1: Table S5.

Effect of site-to-site variation
While there are no statistically significant differences
between the sites for the 1 μg input amount of RNA
for all three kits (Additional file 1: Table S6), there
are differences in the percentage of reads mapped to
rRNA between the sites for the 10 ng samples NEXT-
Flex (9.6% vs 6.6%, Wilcoxon P-value < 0.01) and
NEB Next (14.1% vs 29.7%, Wilcoxon P value < 0.
001). The percentage of reads that were too short
(<15nts) for TruSeq 10 ng input samples were also
different between the two sites (2.1% vs 16.6%, Wil-
coxon P value < 0.01). The percentage of input reads
that map to the human transcriptome is significantly
different between the two sites for the 10 ng samples
for all three kits. Additional file 1: Table S7 shows
the number of miRNAs that are detected at greater
than 10 counts in at least 25% of the samples after
normalization for sequencing depth by DESeq2 [18]
(See Methods) between the two sites for the two in-
put amounts for all three kits. There is no statistically
significant difference between the 1 μg and 10 ng
samples for Illumina and NEB Next between the two
sites. However, there is a significant difference in the
number of miRNAs detected with the 10 ng input
NEXTFlex samples between Site 1 (Median: 633; IQR:
580–654) and Site 2 (Median: 344; IQR: 319–352).
Furthermore, a principal components analysis (PCA)
shows that these samples cluster by Site and not by
tissue type (Additional file 2: Figure S3); hence these
10 ng NEXTFlex samples from Site 2 were removed
from further analyses. These data indicate that with
smaller RNA inputs there are greater technical chal-
lenges from site to site, particularly related to the use

of the NEXTFlex kit, and these differences are more
pronounced for low abundance miRNAs,

miRNA analysis
When differences between the kits and the sites are
included, the correlation between the 1 μg and 10 ng
inputs of a tissue never drops below 0.88 (Additional file
1: Table S8). Biological differences between the tissues
are captured reproducibly, no matter the sequencing kit
or the RNA input. The PCA in Fig. 3a shows clear clus-
tering of the three tissues for both the 10 ng and 1 μg
input amounts across all three kits. Breaking down the
data within each tissue cluster, there is some clustering
of the samples by kit type. For example, the samples
from brain tissue (green) are clustered together, well
away from the other tissues, independent of kit or input
amount. The large and small symbols, indicating input
amount, cluster together by kit. Within this tissue clus-
ter, the NEXTFlex samples (circles) all cluster at the bot-
tom of the brain cluster, TruSeq (triangles) to the slight
top left, and NEB Next (squares) to the top right. To
evaluate the reproducibility of the kits, the coefficient of
variation for each miRNA was computed per tissue for
each input amount across the two sites and is displayed
as a density plot in Fig. 3b. The peak density for the
1 μg samples for all three kits is near the x-axis, suggest-
ing that the majority of the miRNAs have very low CVs.
However, the peak density for the 10 ng samples have
CVs between 0.4 and 0.6 for the NEB Next and Illumina
TruSeq and begins closer to the x-axis for the NEXTFlex
samples (CVs between 0 and 0.2) indicating that the
lower input amount of RNA does increase the variability
in the read counts assigned to miRNAs.
The number/diversity of miRNAs detected with the

NEXTFlex kit is the highest. Figure 4a shows the number
of miRNAs detected at three expression thresholds, 1, 10
and 100 RPM (reads per million mapped to the human
transcriptome) for the three tissues and kits. In order to
perform downstream analyses on the data, miRNAs
should be robustly detectable and changes in expression
should be reproducible across experiments. MiRNAs
expressed above 50–100 RPM may be considered robustly
expressed. As we are assessing the ability for all three kits
to detect miRNA at low input amounts, we included data
on lower levels of expression (1 and 10 RPM). There is no
significant difference between the number of miRNAs de-
tected between Illumina TruSeq and NEB Next for each
of the three thresholds. Figure 4b elucidates the effect of
sequencing depth on the detection rate of miRNAs. The
rate of detecting new miRNAs at > 1 read count and > 10
read counts is depicted here as a function of sequencing
depth ranging from 0.5 million to 10 million input reads
for the three RNASeq kits with each additional million in-
put reads bringing diminished return. The solid lines in

Yeri et al. BMC Genomics  (2018) 19:331 Page 4 of 15



Fig. 4b depict the number of new miRNAs detected as a
logarithmic function of the number of input reads in mil-
lions. As we increase the number of input reads beyond 6
million, the rate of detection of new miRNAs greater than
50 counts drops below 10 miRNAs for each million reads
added. NEXTFlex detects the highest number of new miR-
NAs at both > 1 and > 10 read counts, the difference
between TruSeq and NEB Next is negligible. To assess the
largest changes in individual miRNA detection across the
kits, we list the top five miRNAs that had an expression of
greater than 10 RPM in one kit and less then 5 RPM in
the other two kits in Additional file 1: Table S9. Differen-
tial expression analysis for miRNAs that had robust ex-
pression (> 50 read counts in all tissues) was performed
using DESeq2 (See Methods). With the tissue specificity of
the miRNAs exceeding the technical variability of the kits,

expectedly, the majority of the statistically significant dif-
ferentially expressed miRNAs (absolute fold change > 2
and adjusted P < 0.05) between pairwise combinations of
the three tissues are in common between the three kits
(Fig. 5). NEXTFlex had the highest numbers of differen-
tially expressed miRNAs that were not detected in the
other kits for all three pairwise tissue comparisons. This
results from the fact that the NEXTFlex kit detected more
miRNAs than the other two kits.

Validation of differentially expressed miRNAs from
RNASeq with Qiagen qPCR
The fold changes of the differentially expressed miRNAs
(between different tissues) detected from RNASeq, for
each pairwise tissue comparison, were compared to the
fold changes obtained from three validation platforms:

a

b

Fig. 3 a Principal components analysis (PCA) plot of all samples based on their miRNA expression with the colors represent the three tissues (Brain – Green;
Liver- Blue; Placenta - Red), the shape of the points representing the three kits (BiooScientific NEXTFlex – circle; Illumina TruSeq – triangle; NEB Next - square)
and the size of the points representing the two input amounts. b Density plot of the coefficient of variation (CV) of all miRNAs for each kit and tissue for the
two input amounts (10 ng – top panel; 1 μg – bottom panel)
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Qiagen miRNome miRNA PCR array, HTG EdgeSeq,
and Abcam FirePlex. Only miRNAs that were robustly
expressed in RNASeq (an average expression of > 50
normalized counts in at least 25% of the samples) with
an absolute fold change > 2 and an adjusted P-value < 0.
05 were used in the comparison. The three validation
platforms each detect a subset of known miRNAs, and
do not have the ability to distinguish between the canon-
ical miRNA and their sequence or length isoforms
(isomiRs).
Aliquots of RNA from each tissue were sent to Qiagen

and measured on the Qiagen miRNome arrays, which
allows for assessment of 1066 miRNAs. Table 1 lists the
number of differentially expressed miRNAs identified
through sequencing and the number of these miRNAs
that were assayed by the Qiagen PCR array. MiRNAs are
considered concordant if their fold change is in the same
direction between RNASeq and qPCR and discordant if
their fold change was in the opposite direction. There
were 31, 3 and 29 miRNAs that were discordant between
qPCR and all three sequencing kits for the Brain-Liver,
Brain-Placenta and Placenta-Liver comparisons respect-
ively. NEXTFlex, on average, had the highest number of
miRNAs in common and concordant with the qPCR fold
changes (NEXTFlex: 240, TruSeq: 192 and NEB Next:
222) and the highest number of discordant miRNAs with
qPCR (NEXTFlex: 85, TruSeq: 73 and NEB Next: 75).

NEB Next had the overall highest concordance with the
PCR array results. Not surprisingly, the correlation of
differentially expressed miRNAs between qPCR and
RNASeq improves as the expression level of the miRNA
and the fold change increases. This is illustrated in Fig. 6,
the Pearson’s correlation coefficient between the log fold
change in sequencing and qPCR is plotted as a function of
the average read count expression in RNASeq. From the
figure, differentially expressed miRNAs that have an aver-
age expression of greater than 28 (256) read counts in
sequencing correlate well (> = 0.9) with fold changes from
qPCR. These data provide a guide for the expression
threshold of miRNAs discovered via sequencing - for
validation on high throughput qPCR platforms such as
the Qiagen miRNome arrays.

Validation of differentially expressed miRNAs from
RNASeq with HTG EdgeSeq
Aliquots of RNA from each tissue sample was sent to
HTG for analysis on their HTG EdgeSeq platform. The
HTG EdgeSeq library that we used for comparison to
conventional sequencing surveyed 2085 human miRNA.
The three tissues were sequenced with HTG EdgeSeq in
triplicate with an input amount of 20 ng and one set was
sequenced with an input amount of 10 ng. The number
of miRNAs detected by HTG EdgeSeq at greater than 10
RPM was 946 ± 51 (mean ± standard error) and 325 ± 20

a

b

Fig. 4 a Number of miRNAs detected at three expression thresholds: > 1 read per million mapped to the genome (RPM), > 10 RPM and > 100
RPM for each tissue and kit. The asterisks show significance for comparison between BiooScientific NEXTFlex and the other two kits. b Number of
new miRNAs detected as a function of the number of input reads sequenced at two thresholds (> 10 read counts and > 50 read counts) for the
three kits and tissues
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at greater than 100 RPM. There were no statistically de-
tectable differences in the number of miRNAs detected
between the 20 ng and the 10 ng inputs, therefore, all
replicates were included as one analysis. PCA (Fig. 7)
demonstrates the tissue specificity of the miRNAs. Dif-
ferential expression analysis for miRNAs that had non-
zero expression in at least 25% of the samples was per-
formed using DESeq2 (See Methods). Table 2 lists for
each of the three pairwise combinations of the tissues in
each kit, the number of differentially expressed miRNAs
in RNASeq, the number of miRNAs assayed by HTG

EdgeSeq, the number of miRNAs that were concordant
and discordant with RNASeq and the number of miR-
NAs that were concordant and significantly differentially
expressed (absolute fold change > 2 and an adjusted P <
0.05) in both HTG EdgeSeq and RNASeq. On average,
about 85% of the differentially expressed miRNAs in
RNASeq are detected by HTG EdgeSeq with greater
than 95% of the miRNAs being concordant with RNA-
Seq. NEXTFlex, on average has the highest number of
miRNAs that were concordant with HTG EdgeSeq
(NEXTFlex: 215, TruSeq: 177 and NEB: 187). Of the
miRNAs that were not significant in HTG EdgeSeq, but
were significant in RNASeq, 82% were in agreement with
RNASeq regarding the directionality of the fold change.
Approximately 30% of the miRNAs significant by RNA-
Seq, but not significant by HTG EdgeSeq, had an aver-
age expression < 100 counts in RNASeq.

Validation of differentially expressed miRNAs from
RNASeq with Fireplex
An aliquot of RNA from each tissue was sent to Abcam
for testing on their FirePlex, hybridization and flow sort-
ing platform. A total of 131 miRNA probes were
included on a custom made FirePlex panel for the three
tissues and the samples were run in triplicates. A full list
of the probes and the number of tissues in which they
were detected is presented in Additional file 1: Table
S10. Nineteen miRNA detected by sequencing were
below the limit of detection for FirePlex. 32% (6/19) of
the undetected FirePlex miRNA probes had an average
expression of less than 100 counts in RNASeq. A two-
tailed t-test was used to carry out differential expression
analysis for pairwise comparisons of the tissues and a
nominal P < 0.05 was used to determine significance. On
average, ~ 70% of the miRNAs that were detected by
FirePlex were concordant with RNASeq in both direc-
tionality and statistical significance. Of the miRNAs that
were measured to be significantly differentially expressed
by sequencing, but not by FirePlex (p-value> 0.05), a
significant proportion of them (87%) were in agreement
with RNASeq regarding the directionality of the fold
change. Table 3 summarizes the comparison between
RNASeq and FirePlex.

Comparison of RNASeq kits for extracellular plasma RNA
We next sought to compare low input RNASeq from a
different sample type; plasma. We chose two kits; Tru-
Seq (results for TruSeq and NEB Next were very similar
for all of the tissue comparisons) and the NEXTFlex kit
(because it was the most different from the other two
kits). We examined the effect of plasma input volume
on sequencing results. Total extracellular RNA was iso-
lated from five different volumes of a large pooled
plasma sample, from 200 μL to 5 mL. Figure 8a is a

Fig. 5 Venn diagrams representing the number of miRNAs that are
differentially expressed between the three tissue comparisons –
Brain versus Liver, Brain versus Placenta and Liver versus Placenta
for all three kits
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stacked bar plot that shows the average percentage of
reads that map to different RNA biotypes for NEXT-
Flex and TruSeq. The NEXTFlex kit has a higher per-
centage of reads that align to miRNAs (NEXTFlex:
74%; TruSeq: 64%). The remaining reads map to
YRNA fragments and together, the miRNAs and
YRNA fragments make up ~ 95% of the sequencing
from these plasma samples in both kits. The samples
segregate by kit type, and not by their input volumes
(Fig. 8b), revealing that the difference in the kits is
greater than the difference in input volume. The low
input volumes (200 μL, 500 μL) and the high input
volumes (2, 3 and 5 mL) do cluster differently. As
with the tissue samples, the number of miRNAs de-
tected for NEXTFlex at three different thresholds, > 1,
10 and 100 RPM, is greater than TruSeq (Fig. 8c).

Discussion
Investigators interested in small RNAs have a number of
choices regarding which of the protocols and kits for
RNA isolation, library sample preparation, and down-
stream validation platforms would be most suitable for
their experiments. The findings of the miRNA Quality
Control Study described significant differences among
platforms for miRNA detection [9]. We were further
concerned about the potential exacerbation of small
RNASeq bias and lack of concordance when using sam-
ples with low RNA inputs [17, 19]. Therefore, we wanted
to characterize sources of variation in small RNASeq
from low input amounts of RNA, and correlate these
results with downstream validation platforms. These
studies could help identify strategies that could increase
the rigor and reproducibility of data across projects and
laboratories.
We assessed the data quality from small RNASeq

when reducing RNA input by 100× from 1 μg to 10 ng,
and the correlation of the sequencing results from these

Table 1 Number of miRNAs differentially expressed in RNA sequencing validated by Qiagen miRnome high throughput qPCRa

Kit Tissue
Comparison

Differentially Expressed
miRNAs (RNASeq)a

Assayed by
qPCR

Concordant – in same direction
as RNASeq (%)

Discordant – in opposite direction
as RNASeq (%)

BiooScientific B_vs_L 322 285 209 (73.33%) 76 (26.67%)

BiooScientific B_vs_P 366 305 299 (98.03%) 6 (1.97%)

BiooScientific P_vs_L 317 269 214 (79.55%) 55 (20.45%)

Illumina-TruSeq B_vs_L 227 207 164 (79.23%) 43 (20.77%)

Illumina-TruSeq B_vs_P 295 254 250 (98.43%) 4 (1.57%)

Illumina-TruSeq P_vs_L 241 206 162 (78.64%) 44 (21.36%)

NEB B_vs_L 250 226 186 (82.3%) 40 (17.7%)

NEB B_vs_P 312 269 262 (97.4%) 7 (2.6%)

NEB P_vs_L 262 219 179 (81.74%) 40 (18.26%)
a The differentially expressed miRNAs in RNA sequencing have an average expression (calculated across both tissues denoted in the “Tissue comparison”
column) ≥ 50 counts and is expressed in at least 25% of the total number of replicates for each pairwise comparison. The percentage of concordant and
discordant miRNAs are calculated based on the number of miRNAs assayed by qPCR

Fig. 6 Pearson’s correlation coefficient computed from the log fold
changes between RNASeq and Qiagen miRnome qPCR and plotted
as a function of the average expression in RNASeq

Fig. 7 PCA plot of the three tissues based on their miRNA expression
assayed by EdgeSeq
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10 ng samples with downstream validation platforms.
We used three different tissues, brain, liver and placenta
to examine differences in RNA expression across three
sequencing kits (NEB Next, NEXTFlex, and TruSeq).
We then took the differential expression patterns be-
tween tissues and assayed them on platforms that used
qPCR (Qiagen miRNome assay) or miRNA hybridization
strategies with different readouts, sequencing with HTG
EdgeSeq and flow sort using Abcam FirePlex. To enable
comparisons across the kits, all data analyses were per-
formed identically on all samples.
While each of the kits have inherent sequencing

biases for a subset of detected RNAs (Additional file 1:
Table S9), these kit specific differences were minor
compared with biological differences in each tissue. It
is worth noting that the TruSeq kit detected far more
tRNA fragments than the other kits. It is unclear what
the true proportion of tRNA fragments are in the liver
samples and this should be further tested. While we
were able to discern minor differences for each kit and

its performance, reassuringly the majority of miRNA
data correlated well across kits for each tissue and in-
put amount. Minor differences between the kits were
identified and should be considered when choosing a
kit for a project. More miRNA was detected in samples
sequenced with the NEXTFlex kit at both input con-
centrations. However, this kit also showed larger site-
to-site differences, and a higher number of reads that
were too short, especially when the input RNA amount
was 10 ng.
Expression thresholds are an important consideration

for miRNA studies. For studies profiling and discovering
small RNA biotypes as potential readouts of health and
disease, it may be useful to identify and report RNAs
expressed at low levels across a variety of tissues and
biofluids – especially while the field is in the early
phases of discovery. It is currently unknown what
threshold is appropriate for biological relevance or diag-
nostic purposes for small RNA. For example, RNAs dis-
covered via sequencing that have low numbers of

Table 2 Number of miRNAs differentially expressed in RNA sequencing validated by EdgeSeqa

Kit Tissue
Comparison

Differentially Expressed
miRNAs (RNASeq)a

Assayed by
EdgeSeq

Concordant – in same
direction as RNASeq (%)

Discordant – in opposite
direction as RNASeq (%)

Concordant and
Significant (%)

BiooScientific B_vs_L 322 292 (90.68%) 267 (91.44%) 25 (8.56%) 210 (71.92%)

BiooScientific B_vs_P 366 305 (83.33%) 294 (96.39%) 11 (3.61%) 243 (79.67%)

BiooScientific P_vs_L 317 264 (83.28%) 252 (95.45%) 12 (4.55%) 193 (73.11%)

Illumina-TruSeq B_vs_L 227 204 (89.87%) 197 (96.57%) 7 (3.43%) 173 (84.8%)

Illumina-TruSeq B_vs_P 295 243 (82.37%) 235 (96.71%) 8 (3.29%) 202 (83.13%)

Illumina-TruSeq P_vs_L 241 195 (80.91%) 184 (94.36%) 11 (5.64%) 156 (80%)

NEB B_vs_L 250 224 (89.6%) 218 (97.32%) 6 (2.68%) 179 (79.91%)

NEB B_vs_P 312 258 (82.69%) 251 (97.29%) 7 (2.71%) 213 (82.56%)

NEB P_vs_L 262 213 (81.3%) 203 (95.31%) 10 (4.69%) 168 (78.87%)
a The differentially expressed miRNAs in RNA sequencing have an average expression (calculated across both tissues denoted in the “Tissue comparison”
column) ≥ 50 counts and is expressed in at least 25% of the total number of replicates for each pairwise comparison. The percentage of concordant and
discordant miRNAs are calculated based on the number of miRNAs assayed by EdgeSeq. Significant miRNAs in EdgeSeq: abs(log2FC) > 1 and padj < 0.05

Table 3 Number of miRNAs differentially expressed in RNA sequencing validated by FirePlexa

Kit Tissue
Comparison

Differentially Expressed
miRNAs (RNASeq)a

Assayed by
FirePlex

Concordant – in same
direction as RNASeq (%)

Discordant – in opposite
direction as RNASeq (%)

Concordant and
Significant (%)

BiooScientific B_vs_L 322 47 39 (82.98%) 8 (17.02%) 28 (59.57%)

BiooScientific B_vs_P 366 54 52 (96.3%) 2 (3.7%) 35 (64.81%)

BiooScientific P_vs_L 317 42 41 (97.62%) 1 (2.38%) 32 (76.19%)

Illumina-TruSeq B_vs_L 227 43 39 (90.7%) 4 (9.3%) 29 (67.44%)

Illumina-TruSeq B_vs_P 295 53 50 (94.34%) 3 (5.66%) 35 (66.04%)

Illumina-TruSeq P_vs_L 241 38 38 (100%) 0 (0%) 31 (81.58%)

NEB B_vs_L 250 45 39 (86.67%) 6 (13.33%) 29 (64.44%)

NEB B_vs_P 312 51 50 (98.04%) 1 (1.96%) 34 (66.67%)

NEB P_vs_L 262 39 39 (100%) 0 (0%) 31 (79.49%)

The differentially expressed miRNAs in RNA sequencing have an average expression (calculated across both tissues denoted in the “Tissue comparison” column) ≥
50 counts and is expressed in at least 25% of the total number of replicates for each pairwise comparison. The percentage of concordant and discordant miRNAs
are calculated based on the number of miRNAs assayed by FirePlex. Significant miRNAs in FirePlex: p < 0.05
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counts, may still be robustly detected when using a tar-
geted approach. Notably, however, higher levels of ex-
pression will be more accurately detected across sites,
studies, and platforms. We identified miRNAs differen-
tially expressed between two tissues with > 50 read
counts. We then assessed these miRNA changes on
other platforms. Not surprisingly, miRNA that have
low levels of expression and are identified as differen-
tially expressed between two tissues by sequencing,
are harder to validate with one another and on other
platforms (Fig. 6), compared to miRNA that are
highly expressed with large fold changes. Using 50
read counts as the cutoff threshold, approximately
56% of all miRNAs found to be differentially
expressed were common across all three kits.
Biological differences were preserved and validated

across all platforms. For example, brain compared with
placenta had the largest number of differentially
expressed miRNA detected by RNASeq. The differen-
tially expressed miRNAs in these two tissues were also
consistently detected with the highest concordance in
each platform (Tables 1, 2 and 3). We were generous

with the term validation; downstream platforms needed
to measure changes in expression in the same direction
as RNASeq. If any of these downstream assays were to
be turned into validation platforms or diagnostic tools,
they would need to be optimized and further assessed
for their ability to detect similar significant fold changes.
The HTG EdgeSeq results were closest to the RNASeq
results with greater than 95% concordance (Table 2),
potentially because the readout of the platform itself is
sequencing.
The Qiagen qPCR high-throughput assay performs

reasonably well as a validation protocol, with on average,
~ 85% of the miRNAs in agreement with RNASeq. HTG
EdgeSeq is based on next generation sequencing tech-
nologies; the HTG EdgeSeq library preparation enriches
for miRNAs by probe-based capture and has on average
~ 80% concordance with RNASeq. The majority (~ 82%)
of the remaining miRNAs that were not statistically sig-
nificant in HTG EdgeSeq have fold changes in the same
direction as RNASeq. FirePlex too utilizes a probe-based
miRNA enrichment strategy with no separate RNA
isolation step. There is a reasonably high level of

a

c

b

Fig. 8 a Average percentage of reads mapped to the human transcriptome to RNA biotypes for Illumina TruSeq and BiooScientific NEXTFlex for
the plasma samples. The percentages presented here are averaged over the 6 different volumes for each kit respectively. b PCA plot of the plasma
samples show clustering of the samples by kit-type and not by input volume. c Number of miRNAs detected at three expression thresholds: > 1 read
per million mapped to the genome (RPM), > 10 RPM and > 100 RPM for all the plasma samples for Illumina TruSeq and BiooScientific NEXTFlex
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concordance with RNASeq (~ 70%), with the majority
of the fold changes of miRNAs that did not reach sig-
nificance, in the same direction as in RNASeq. How-
ever, it is important to keep in mind that all three
technologies discussed here do not have the ability to
distinguish sequence or length variations or isoforms
of miRNAs (isomiRs) from the canonical mature
miRNA.
It appears that as the average expression of the miR-

NAs in RNASeq increases beyond 250–300 RPM, there
is a good correlation with both Qiagen qPCR and HTG
EdgeSeq as validation platforms. This is especially useful
to be aware of when working with extracellular RNA
from biofluid samples where the miRNA profiles are
dominated by a few miRNAs with orders of magnitude
more expression compared to the remaining miRNAs.
We also assessed small RNASeq with plasma samples

at different volumes. For research purposes, plasma sam-
ple volumes are typically limited so that many different
assays and analyses can be performed using the same
sample. If the RNAs related to a disease were identified
and present in plasma for use as a diagnostic, acquiring
larger volumes would not be a problem. However, we
tested a range of volumes for RNA input consistent with
what is used for research and discovery, from 200 μL to
5 mL. We found that the data across all volumes corre-
lated very well. The smallest volumes tended to cluster
slightly away from the larger volumes. However, it
should be noted that these findings were from freshly
isolated good quality plasma; whether these findings
hold up for archival samples of variable age was not
explored.
There are a growing number of studies that have

identified small RNAs as pivotal to normal cellular
function and development of disease [20–22], yet re-
producibility of data across laboratories has been
challenging [3, 23]. In addition, there has become an
enthusiastic interest in extracellular RNAs and what
types of small RNAs are in circulation [4, 6, 12–14].
Many of these areas of investigation are limited by
the RNA available, necessitating a careful examination
of how well kits and platforms perform with low
RNA input. We need to explore and identify the
boundaries to what is robust and reproducible in low
input experiments. One area of potential challenge to
data reproducibility is in the types of discovery and
validation platforms used. We tested the effects of
low RNA input on the robustness of data generated
from RNASeq. Our major finding was a significant
increase in the number of miRNAs detected using the
NEXTFlex kit, that would have an impact on down-
stream analysis and validation. While our paper was
under review, another paper from Dard-Dascot et al.,
2018 [24], found similar results when comparing five

different sequencing kits. They also concluded that
the NEXTFlex kit provided a higher diversity of
miRNA.
All of these data are available and can be combined

with the data from Pine et al., 2018 [15] using the same
samples. Performance of new sequencing protocols and
platforms can be compared with this data to assess
performance.

Conclusions
The results indicate 4 important findings: 1) We recom-
mend using the BiooScientific NEXTFlex kit, as it de-
tects the largest number of miRNAs, owing to its 4 N
random adaptor sequence that ameliorates ligation bias.
However, there are challenges to implementing this kit
with low input RNA. When using this kit, both sites
found an increased amount of reads that were too short
to be used in downstream analysis, the kit required more
experience and familiarity before technicians were able
to use it consistently. 2) Reassuringly, the biological dif-
ference between tissues for miRNAs exceed that of the
difference in input RNA or between the three small
RNA sequencing kits tested here. 3) The validation of
findings from RNA sequencing experiments by other
technologies such as qPCR, EdgeSeq and FirePlex is
principally dependent on the expression levels in RNA
sequencing; the higher the expression and fold change of
the RNA, the more likely it will be validated in other
technologies. 4) Small RNA sequencing from freshly
extracted plasma samples can be carried out efficiently
with input volumes as low as 200 μL with over 300 miR-
NAs detected at > 10 read counts. These data demon-
strate for the first time, a multi-site quantitative analysis
of miRNA discovery via RNA sequencing for low input
RNA amounts and subsequent validation on three dis-
tinct platforms.

Methods
Samples
The three total human RNA sources distributed were
obtained from Ambion (Thermo Fisher Scientific): Hu-
man Brain Reference RNA (Cat. No. AM6050), Human
Liver Total RNA (Cat. No. AM7960) and Human
Placenta Total RNA (Cat. No. AM7950) Two concentra-
tions of the total RNA were used in each library prepar-
ation. RNA was quantified in triplicate using Quant-iT
Ribogreen RNA Assay kit, Low-Range protocol (R11490;
ThermoFisher). We used 1 μg, which is the staring input
recommended by each sequencing kit, and 10 ng. A
large pool of plasma (30 mL) was used for comparison
of kits and input volumes. Whole blood was collected
from normal healthy volunteers in EDTA tubes, spun at
2500 rpm to separate plasma. Plasma was pooled, and
1 mL aliquots placed in tubes and stored at − 80 °C. The
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appropriate number of tubes were combined and iso-
lated for each comparison. For example, for the 5 mL in-
put volume, 5 aliquots were selected and the RNA
isolated (using miRVana Paris, ThermoFisher AM1556,
with modifications [25] and sample preparation for
sequencing performed. The samples were collected in
accordance with established Institutional Review Board
protocols (WIRB #20142635).

Sequencing
Sequencing was performed at two sites: MGH and TGen

Illumina TruSeq small RNA library preparation Small
RNA libraries were generated using Illumina TruSeq
Small RNA Sample kit (RS-200-0048; Illumina). The
reagents were utilized with the following modifications.
The 3′ adapter, 5′ adapter, Stop Solution, RNase Inhibi-
tor and RT primer were diluted by 50% with water [25].
During PCR amplification, the Index primer and RNA
PCR primer volumes were reduced by 50% and the vol-
ume replaced with water. PCR amplification was per-
formed based on the upper and lower recommendation
of the kits. A total of 16 cycles for the 10 ng starting ma-
terial and 11 cycles for the 1 μg starting material. The
libraries were then run in a 6% TBE Gel for 55 min at
140 V and the between 140 to 160 bp were excised from
the gels. These gel pieces were fractured into smaller
pieces and allowed to incubation on a rotator overnight
in water. Then an ethanol precipitation was performed
to precipitate the RNA and the resulting pellet of RNA
was resuspended in 11ul of ultra pure water.

BiooScientific NEXTFlex small RNA library prepar-
ation Small RNA libraries were generated using NEXT-
Flex Small RNA Library Prep Kit v2 (Cat #5132–03).
The manufacturer’s instructions where followed through
PCR amplification. The optional stop point was used
post the RT reaction prior to clean up and PCR amplifi-
cation. In regards to PCR amplification the 1 μg samples
received 12 cycles and the 10 ng sample received 18 cy-
cles. Following PCR amplification, the libraries where
then run in a 6% TBE Gel for 30 min at 200 V and the
between 150 to 170 bp were excised from the gels. At
this point there was a divergence from the manufactures
instruction, an ethanol precipitation was used in place of
the recommenced bead purification. The resulting pellet
of RNA was resuspended in 11 μl of ultra pure water.

NEB small RNA library preparation Small RNA librar-
ies were generated using NEB Next Small RNA Library
Prep Set for Illumina (NEB #E7330S). The manufac-
turer’s instructions where followed through with the
PCR amplification. The PCR amplification was done
under the parameters of 1 μg starting input received

12 cycles and the 10 ng input received 15 cycles. Follow-
ing PCR amplification, the libraries where then run in a
6% TBE Gel for 60 min at 120 V and the between 140 to
160 bp were excised from the gels using a razor blade.
Diverging from the manufacture protocol, gel pieces
were fractured into smaller pieces and allowed to incu-
bation on a rotator overnight in water. Then an ethanol
precipitation was performed to precipitate the RNA and
the resulting pellet of RNA was resuspended in 11ul of
ultra pure water.

Small RNA library QC and pooling Samples were
quantified with the Agilent High Sensitivity DNA Kit
(5067–4626; Agilent). The peak for the sample was inte-
grated from 120 bp to 160 bp to get the pMolarity of the
product that will cluster on the sequencer. Samples with
similar pMolarity were grouped on the same lane and
pooled together to create a total of 8 unique pools con-
taining 15 samples with different barcodes. These pools
were then quantified with the Agilent High Sensitivity
DNA Kit to get the final pMolarity for the pools. The
pools were then denatured and clustered on a single
read Illumina V3 flowcell (GD-401-3001; Illumina). Site
1 flowcells ran on the Illumina HiSeq sequencing plat-
form (HiSeq 2000/2500; Illumina) for 50 cycles for with
a 7 cycle indexing read. The samples from Site 2 were
sequenced on an Illumina NextSeq 500 for single read
76 cycles. Site 2 sequenced to a read length of 76 nts,
whereas Site 1 samples were sequenced to <=50 nts. To
ensure a fair comparison between the RNA fragments
detected by the two sites, only reads that were in the
range of 15–50 nucleotides were considered. Density
plots of the unrestricted read length distributions from
both sites are presented in Additional file 2: Figure S1.
The difference in the percentages of reads assigned to
the various RNA biotypes when the read length is re-
stricted to <=50 nts for the Site 2 samples is shown in
Additional file 2: Figure S2.

HTG EdgeSeq
Samples were sent to HTG for sequencing. The HTG
EdgeSeq miRNA Whole Transcriptome Assay was used
to run the NIST RNA samples as described previously
[26], with the following exception, the nuclease protec-
tion assay was run at 41 °C rather than 50 °C. Briefly,
Lysis Buffer (HTG) was added to each of the 18 NIST
purified RNA samples, and either 10 ng (both versions)
or 20 ng (version 1 only) per sample was used in the
assay. Each sample was run in triplicate. Following
nuclease protection, each sample was tagged individually
with molecular barcodes; tagged samples were pooled
and sequenced on an Illumina MiSeq sequencer. Fastq
files from the individual replicates were processed and
the expression data reported as raw counts by the HTG
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EdgeSeq parser software. Data from one replicate of one
sample did not pass QC metrics and were excluded from
the analysis.

Abcam FirePlex
Samples were processed using the FirePlex miRNA
Assay (Abcam) as per the published protocol [27].
In brief, for each tissue sample, 1 ng total RNA was

loaded. The plate was incubated at 37 °C for 60 min with
shaking. After rinsing twice with 1X Rinse A, 75 μL of
1X Labeling Buffer was added to each well. The plate
was incubated at room temperature for 60 min with
shaking. After two rinses with 1X Rinse B followed by
one rinse with 1X Rinse A, a catch plate was added to
the vacuum manifold and the filter plate put under con-
stant vacuum. 65 μL of 95 °C RNAse-free water was
added twice to each well to elute the ligated sample.
30 μL of this meltoff was added to a clean PCR plate
and mixed with 20 μL PCR master mix. The mixture
underwent 32 cycles of PCR amplification. Next 60 μL
of Hybe Buffer was added back to each well of the
original particles followed by 20 μL of the PCR product,
and the plate was incubated at 37 °C for 30 min with
shaking. After rinsing twice with 1X Rinse B followed by
one rinse with 1X Rinse A, 75 μL of 1X Reporting Buffer
was added to each well and the plate incubated at room
temperature for 15 min with shaking. After rinsing twice
with 1X Rinse A, 175 μL of Run Buffer was added to
each well. The samples were then scanned on an EMD
Millipore Guava 6HT flow cytometer. The flow cyt-
ometer output was analyzed with the FirePlex Analysis
Workbench software.

Qiagen miRNome PCR Array
Samples were evaluated with real-time PCR using the
miScript PCR System (Qiagen, Venlo, Netherlands).
Briefly, 10 ng of each sample was reverse transcribed
and then preamplified (13 cycles) using the miScript Sin-
gle Cell qPCR Kit, according to the manufacturer’s
protocol. Following preamplification, the 25 μl amplifica-
tion product was diluted to 127 μl using nuclease-free
water. From there, 110 μl of the diluted product was di-
luted to a 330 μl final volume using nuclease-free water.
Real-time PCR was then performed using the human
miRNome (QIAGEN catalog number MIHS-3216Z).
100 μl of diluted product was applied to each of the
three, 384-well plates associated with the miRNome.
Real-time PCR was performed on a ThermoFisher
instrument using the recommended miScript cycling
parameters.

RNASeq data analysis
The raw sequence image files from the Illumina HiSeq
2500 or Illumina MiSeq in the form of .bcl are converted

to the fastq format using bcltofastq v1.8.4 and
checked for quality to ensure the quality scores do
not deteriorate drastically at the read ends. The
adapters from the 3′ end are clipped using cutadapt
v.1.10 [28] (http://cutadapt.readthedocs.io/en/stable/
guide.html). Reads shorter than 15 nts are discarded
and after adapter trimming, the 3′ bases below a
quality score of 30 are trimmed as well.
Reads that arise from human rRNA and contamination

from library preparation protocols are removed before
they are mapped to the human genome. The reads are
first mapped to a library of UniVec contaminants, a col-
lection of common vector, adapter, linker and PCR pri-
mer sequences collated by the NCBI. They are then
mapped to human rRNA sequences obtained from NCBI
The reads are mapped to the rRNA and UniVec
sequences using Bowtie2 [29] and those that map are
removed from the analysis. The alignment to the human
genome and transcriptome takes place in two stages.
First, the rRNA and UniVec free reads are mapped to
the human genome (hg19) using STAR [30]. The reads
that map to the genome are then mapped to the human
transcriptome. Also, the reads that are not mapped to
the human genome are mapped to the human transcrip-
tome, The library for the human transcriptome is built
by concatenating miRNAs and hairpins from miRBase
21 [31], tRNAs from gtRNAdb [32], piRNAs from piR-
Base v1.0 [33], protein-coding, non-coding and and
other RNA sequences from ENSEMBL 75. The STAR
alignment is performed end to end with a single mis-
match allowed while mapping and each read is allowed
to multimap to at most 40 RNA annotations. Here, there
is no mismatch allowed and each read is allowed to mul-
timap to at most 40 RNA annotations. Additional file 1:
Table S11 provides the list of libraries used and their
versions.

Differential expression analysis
For both RNASeq and EdgeSeq, differential expression was
conducted for all miRNAs that had expression in at least
25% of the samples across the two groups that were com-
pared with the DESeq2 [29] package in R. The raw read
counts for the samples were normalized using the median
ratio method (default in DESeq2). For the RNASeq analysis,
miRNAs were deemed to be statistically differentially
expressed if they had an expression of greater than 50
counts in at least 25% of the samples at an absolute fold
change > 2 and an adjusted P < 0.05 (Benjamini Hochberg).
For the EdgeSeq analysis, miRNAs were deemed to be sta-
tistically differentially expressed if they had an absolute fold
change > 2 and an adjusted P < 0.05 (Benjamini Hochberg).
For the FirePlex analysis, the data was log-transformed after
adding a pseudo value of 1 and two-tailed t-tests were used
to determine significance at a nominal P < 0.05.
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Additional files

Additional file 1: Table S1. Percentage of input reads aligned to the
human transcriptome, human rRNA, UniVec contaminant sequences and
discarded because they are too short (< 15 nts) and unmapped to the
human transcriptome. Table S2. Median (Inter-quartile range) of percentage
of input reads aligned to the human transcriptome, human rRNA, UniVec
contaminant sequences. Table S3. Percentage of reads aligned to the
human transcriptome to each RNA biotype for all samples. Table S4. Median
(Inter-quartile range) of percentage of input reads aligned to different RNA
biotypes between the three sequencing kits. Table S5. Median (IQR) of
percentage of input reads aligned and comparison of input amount of RNA.
Table S6. Median (IQR) of percentage of input reads aligned and
comparison between the two sites for the two input amounts of
RNA. Table S7. Median (IQR) of number of miRNAs greater than 10
counts detected in at least 25% of the samples between the two
sites for the two input amounts of RNA. Table S8. Pearson’s and
Spearman’s correlation coefficient by tissue, kit and input amount.
Table S9. Kit specific miRNAs found in each tissue for each kit. The
top 5 miRNAs for each tissue that have expression greater than 10
RPM in one kit, but less than 5 RPM in the other two are presented
for each tissue and kit. Table S10. miRNAs included on the custom
made FirePlex Panel. The columns denote the number of samples that had
above detection-limit expression in each tissue. Table S11. Database of
RNA biotypes used. (XLSX 89 kb)

Additional file 2: Figure S1. Density plot of read lengths for all three
kits and tissues respectively by site. Site2 sequenced to a length of
76 nts, whereas all of Site1 samples were sequenced to <=50 nts.
Figure S2. Comparison of percentage of reads assigned to the
various RNA biotypes for read length restricted to less than 50 nts
versus read length = 76 nts. Site2 sequenced to a length of 76 nts.
Figure S3. PCA plot showing that the BiooScientific NEXTFlex
samples from Site2 cluster by themselves indicating a batch effect.
Also, the figure on the right shows the number of miRNAs detected
> 10 counts for the two input amounts 10 ng and 1 μg by Site for
the BiooScientific NEXTFlex samples. (PDF 5418 kb)
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