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Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This 

is especially critical in the setting of lung transplantation where more than half of donor allografts 

are obtained postmortem from individuals with TBI. The mechanism by which TBI causes 

pulmonary dysfunction remains unclear but may involve the interaction of high mobility group 

box 1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To 

investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE sufficient 

(wildtype) or deficient (RAGE−/−) C57BL/6 mice were subjected to TBI through controlled 

cortical impact and studied for cardio-pulmonary injury. Compared to control animals, TBI 

induced systemic hypoxia, acute lung injury, pulmonary neutrophilia and decreased compliance, 

all of which were attenuated in RAGE −/− mice. Neutralizing systemic HMGB1, induced by TBI, 

reversed hypoxia and improved lung compliance. Compared to wildtype donors, lungs from 

RAGE−/− TBI donors did not develop acute lung injury after transplantation. In a study of clinical 

transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic 

oxygenation of the donor lung pre-transplantation and predicted impaired oxygenation post-

transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by 

which TBI induces lung dysfunction and that targeting this pathway prior to transplant may 

improve recipient outcomes following lung transplantation.

Introduction

In addition to the lesions caused at the moment of injury, brain trauma can result in 

secondary damage, which includes a variety of events that take place in the subsequent hours 

and days after injury. Included in the possible secondary injury types are indirect effects on 

the pulmonary system including acute respiratory distress syndrome (ARDS) and acute lung 

injury (ALI). This is particularly relevant in the context of lung transplantation where the 

majority of donor lungs are procured from brain-dead donors, of which between 40–70% 

have sustained traumatic brain injury (TBI) (1). Of those evaluated only approximately 15% 

are deemed suitable for transplant (2). The mechanisms by which TBI leads to pulmonary 

dysfunction are poorly understood. Historically, a combination of catecholamine surge-

induced pulmonary vascular permeability, as well as production of inflammatory mediators 

are thought to compromise lung function (3). There is evidence that systemic inflammatory 

factors cause pulmonary injury and dysfunction (4).

Recent approaches to identifying the pathophysiological mechanisms of acute lung injury 

have focused on non-traditional pro-inflammatory mediators and their receptors. In 

particular is the class of danger-associated molecular patterns (DAMPs; alarmins), which are 

often associated with sterile inflammatory responses to events such as ischemia or systemic 

disease. A DAMP of particular interest is high mobility group box-1 (HMGB1). Though 

HMGB1 is typically associated with chromatin, it can be quickly released into the cytoplasm 

following stress, injury, or disease. Depending on the status of the affected cells, cytoplasmic 

HMGB1 can be passively released into the extracellular space. Alternatively, HMGB1 can 

be actively released by cells of the immune and nervous systems following injury, 

inflammation, or disease (5–7). Progress to date suggests that HMGB1 receptors include 

toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) (8). 

Both TLR4 and RAGE are expressed by many cell types including those in the lung (12) and 
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participate in the onset of innate immune inflammatory processes through activation of NF-

κB (13, 14). HMGB1 binding to RAGE has also been implicated in a number of 

inflammation-associated diseases including cancer, diabetes, epilepsy, and Alzheimer’s 

disease (9–11). It is well established that RAGE is constitutively expressed at high levels in 

the lung (12), and RAGE ligation leads to sustained activation of NF-κB and increased 

RAGE expression, which ensure maintenance and amplification of an inflammatory signal 

(13, 14).

In this study, we examined the involvement of HMGB1 and RAGE in TBI-induced acute 

lung injury in mice whose lungs were utilized as donors for transplantation. We also used 

clinical samples to explore the connection between elevated donor HMGB1 and pulmonary 

dysfunction before and after lung transplantation. As HMGB1 is known for its contribution 

to proinflammatory processes associated with injury and organ damage associated with 

severe sepsis, TBI disruption of the blood-brain barrier and the release of DAMPs could 

trigger an inflammatory cascade in tissues rich in RAGE receptors, most prominently the 

lungs (15–18). In an effort to characterize the cause of pulmonary dysfunction after TBI and 

the role of the HMGB1-RAGE axis, we studied lungs obtained from mice either deficient or 

sufficient in RAGE prior to being utilized as donors for transplantation. Local and systemic 

inflammatory responses as well as pulmonary function in both donors and recipients were 

analyzed. Translational studies examined the correlation of systemic HMGB1 concentrations 

and indices of acute lung injury in human lung transplant donors before donor harvest and in 

recipients after lung transplantation. Our objective was to determine whether TBI-induced 

inflammatory changes result in pulmonary dysfunction that is dependent on the HMGB1-

RAGE pathway.

Results

TBI Induces Acute Lung Injury and Increased Systemic HMGB1

TBI caused substantial changes in lung architecture of C57BL/6 mice. These animals had 

evidence of alveolar hemorrhage at 4 and 8 hours post injury compared with sham-injured 

mice. By the 12 and 24 hour time points, this alveolar hemorrhage largely had resolved (Fig. 

1A–E). However, these lungs did continue to have evidence of acute lung injury as 

evidenced by proteinaceous debris and neutrophilic infiltration. As scored by a standardized 

assessment (19), lungs from animals subjected to TBI had higher acute lung injury scores 

than control lungs at the same time intervals (Fig. 1F). The mean score for sham-injury 

control lungs was 0.09 ±0.03 while scores at the 4 hour time point after TBI yielded a 

significantly higher score of 0.62 ±0.11 (p < 0.01). Scores remained significantly elevated at 

8, 12, and 24 hours after TBI with scores of 0.47 ±0.11, 0.49 ±0.16, and 0.56 ±0.15, 

respectively (all p < 0.01). Additionally, the amount of alveolar hemorrhage at the 4 and 8 

hour time points corresponded with acute lung injury scores.

Consistent with neutrophilia in the lung were data showing that myeloperoxidase (MPO), a 

neutrophil-derived enzyme, was greater in mice subjected to TBI compared to controls (327 

±14.7 vs. 161 ±12.7 ng/mL, respectively, p<0.01, Fig. S1). Activated caspase-3 staining, a 

marker for apoptosis that can occur during tissue injury of many types including the lung, 
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was not increased in either C57BL/6 or RAGE−/− TBI mice compared to sham TBI mice 

(Fig. S2).

Albumin was quantitated in bronchalveolar lavage fluid (BAL) after TBI to determine if 

increased vascular permeability was associated with the acute lung injury scores. In healthy 

mice subjected to sham injury, the BAL albumin concentration was 52.5 ± 11.2 μg/mL. 

Albumin concentrations were significantly higher at 4 hours post TBI (303 ± 21.0 μg/mL) 

then declined progressively at 8 (301 ± 34.1 μg/mL), 12 (212 ± 17.9 μg/mL), and 24(103 

± 22.1 μg/mL) hours (Fig. 1G). However, compared to controls, all BAL albumin levels 

were increased significantly at each time point indicating TBI-induced vascular permeability 

(p < 0.01).

To determine if HMGB1 increased following TBI, serum HMGB1 levels from sham-injured 

wildtype mice as well as TBI wildtype mice were assayed at 24 hours (Fig. 1H). In sham-

injury control animals, the mean serum HMGB1 concentration was 1.8 ± 0.4 ng/mL. 

However, TBI-induced significantly higher HMGB1 levels compared to controls (4.1 ±0.7 

ng/mL, p < 0.01). Even higher levels were seen with RAGE −/− mice (7.9 ± 2.6 ng/ml, p < 

0.01).

RAGE and HMGB1 Profiling

In an effort to confirm that RAGE, a key receptor for HMGB1, is organ specific, Western 

blots were performed using homogenates of lung, spleen, liver, and spinal cord from three 

wildtype mice. High levels of RAGE were present in the lung samples but not the other 

tissue types (Fig. S3). To localize possible serum sources of HMGB1, we profiled HMGB1 

in both the lungs and cortical tissue ipsilateral to the TBI in sham and TBI mice. Although 

nuclear HMGB1 was observed in the lungs of both sham and TBI mice, there was no 

evidence of the loss of nuclear HMGB1 immunopositive signal (Fig. S4). In contrast, 

cortical tissue associated with the lesion site exhibited a pronounced decrease in the number 

of cells which were immunoreactive for HMGB1 when compared with adjacent, uninjured 

cortical areas 24 hours after TBI. The observed loss of cellular HMGB1in injured tissue did 

not appear to be associated with TBI-induced cell loss as numerous cells within the lesion 

site retained nuclear staining with DAPI (Fig. S5).

TBI Induces Pulmonary Dysfunction

Groups of wildtype C57BL/6 mice were subjected to severe TBI injury followed by 

assessment of systemic oxygenation as determined by PaO2/FiO2 ratios 4 – 24h post TBI 

(Fig 2A). This ratio divides the aterial oxygentation concerntation by the fraction of inspired 

oxygen where increasing values reflect improved ability of the lung to absorb oxygen from 

air. The sham-injury control group, PaO2/FiO2 ratios were normal at 578 ± 5.23. However, 4 

hours after TBI the PaO2/FiO2ratio decreased to 351 ±2.55 and continued to decline at 24 

hours (111.5 ±13.09). Pulmonary function testing at the same intervals demonstrated a 

similar time-dependent decline in compliance (measure of the lungs ability to expand) (Fig. 

2B). For the sham-injury control group, compliance was 0.0315 ±0.0004 mL/cmH2O. By 

eight hours after TBI, compliance decreased to 0.0286 ±0.0008 (p = 0.01) mL/cmH2O and 

continued to decline for up to 24 hours. Compliance at 24 hours was 0.0205 ±0.0006 
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mL/cmH2O, which was significantly lower than the control group (p <0.01). Airway 

resistant values were also recorded but did not differ between the groups (Fig. S6).

Pulmonary Dysfunction due to TBI is diminished in the lungs of RAGE−/− mice

In a separate group of experiments, we determined the role of RAGE in TBI-induced lung 

dysfunction. Wildtype C57BL/6 and RAGE −/− mice were subjected to moderate or severe 

TBI and PaO2/FiO2ratios were assessed at 24 hours. The moderate and severely injured 

wildtype C57BL/6 mice exhibited low PaO2/FiO2values at 358 ±14 and 221 ±14, 

respectively. These values were significantly lower than the sham-injury control mice (554 

± 9.25) (p<0.01) (Fig. 2C). In contrast, RAGE −/− mice subjected to moderate TBI exhibited 

PaO2/FiO2ratios that registered at 541± 8.06 and did not differ from sham-injury PaO2/

FiO2ratio values (p = 0.32). Similarly, RAGE −/− mice with severe TBI did not appear to be 

compromised by the injury with a PaO2/FiO2ratio of 447 ± 3.4, which was significantly 

higher than for the wildtype C57BL/6 mice subjected to the same severe TBI (p<0.01). 

Static compliance was also assessed in wildtype C57BL/6 and RAGE −/− mice subjected to 

moderate and severe TBI. Static compliance in sham control animals was 0.034 ±0.0003 

mL/cmH2O, whereas compliance declined 24 hours after moderate or severe TBI to 0.0302 

±0.0006 mL/cmH2O or 0.0226 ±0.0009 mL/cmH2O, respectively (p<0.01). Compliance 

values were improved significantly in RAGE −/− mice subjected to severe injury with a 

mean value of 0.0317 ±0.0006 mL/cmH2O compared to the wildtype group subjected to the 

same injury (p<0.01) (Fig. 2D). Such results indicate that RAGE plays a major role in the 

pulmonary dysfunction seen in wildtype mice.

TBI causes Lung Dysfunction in TLR4 −/− Mice

In an effort to determine the degree to which TLR4, a key HMGB1 receptor, may contribute 

to lung dysfunction, we subjected TLR4 −/− mice to severe TBI and performed functional 

analyses after 24 hours. All studies were repeated with groups of mice separate from those 

reported in figures 1 and 2. The values from TLR4 −/− mice were compared with a new set 

of RAGE −/− mice subject to the same brain injury. The mean PaO2/FiO2ratio in the TLR4 

−/− mice was 355 ±28 which was significantly lower than values present in control wildtype 

mice and RAGE −/− TBI mice (p < 0.01, Fig. 3A). Additionally, the static compliance value 

in the TLR4 −/− mice was 0.0220 ±0.0040 mL/cmH2O, again significantly lower than the 

control and RAGE −/− mice groups (p < 0.01, Fig. 3B).

Effect of Neutralizing HMGB1 on Lung Dysfunction

To determine if HMGB1 is the primary ligand activating RAGE or TLR4 following TBI, 

wildtype C57BL/6 mice were treated with a HMGB1 neutralizing antibody (HMGB1 Ab) or 

control antibody prior to TBI. HMBG1 Ab treatment resulted in a PaO2/FiO2ratio of 408 

±15.6 at 24 hours after TBI (Fig. 3A) with a mean compliance of 0.0272 ±0.0015 (Fig. 3B). 

These values with the neutralizing antibody were significantly improved compared to values 

observed with the control antibody or in wildtype mice post TBI (p < 0.01). However, these 

values were not different from those observed in TLR4 −/− mice (Fig. 3A,B).
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Preservation of Lung Function using a Toll/IL-1 receptor domain-derived decoy peptide

Toll-like receptors utilize common Toll-/Interleukin-1R Resistance domains (TIR), which 

are pivotal to both interactions of signaling proteins and signal transduction (20). As TLR 

TIR dimers serve as recruitment centers for TLR adapter proteins, it is possible to inhibit 

cellular signaling downstream of TLR4 using cell permeable decoy peptides as competitive 

inhibitors of protein-protein interactions (21). TIRAP and MyD88, known adaptor proteins 

for Toll-like receptor-4, also bind to phosphorylated RAGE (22, 23). Using the cell-

permeating decoy peptide, TAT-4BB, to inhibit surface exposed segments of these adapter 

proteins, we targeted the ability of HMGB1 to produce signaling in vivo via either TLR4 or 

RAGE (24). Wildtype C57BL/6 mice were administered a TAT-4BB decoy peptide before 

exposure to severe TBI. The mean PaO2/FiO2ratio in these animals was 487.8 ±31.14 at 24 

hours post injury, which was significantly higher than values derived from the TLR4 −/− 

TBI mice (p=0.01) but did not differ from RAGE −/− mice (p=0.22, Fig. 3A). Additionally, 

the static compliance value in the decoy peptide 4BB-treated mice was 0.0286 ±0.0050 

mL/cmH2O, which did not differ from TLR4 −/− (p =0.33) or RAGE −/− mice (p = 0.55, 

Fig. 3B).

TBI induces pulmonary dysfunction in the setting of preserved cardiac output

In an effort to ensure that TBI-induced pulmonary dysfunction was non-cardiogenic in 

nature, we utilized gated PET scans to calculate cardiac outputs from four sham-injury 

control mice and four mice 24 hours after severe brain injury (Fig. S7A). The data showed 

that there was no significant difference in heart rates between control animals (440.4 ±32.3 

bpm) and TBI mice (441.7 ±18.8 bpm) (Fig. S7B). TBI mice did exhibit elevations in 

average stroke volumes (0.0436 ± 0.0026 mL) when compared with sham-injury control 

volumes (0.034± 0.0017 mL) (Fig. S7C). Despite the elevated stroke volumes in the sham-

injury group, there was not a significant difference in cardiac output between the groups.

Murine lung transplant recipients from TBI donors exhibit elevated lung injury scores 
compared to recipients from RAGE −/− TBI donors

Acute lung injury scores (Fig. 4) were significantly lower in transplanted lungs from 

wildtype control donors (Fig. 4A) at 0.12 ± 0.02 when compared to TBI donors with a mean 

score of 0.44 ± 0.08 (p < 0.01, Fig. 4B). The means scores in transplanted lungs from TBI 

RAGE −/− donors was 0.17 ± 0.03 (minimal injury) and these lungs were otherwise 

histologically normal (Fig. 4C, D). This score was significantly lower than that for the 

wildtype C57BL/6 donor group (p < 0.01). Such results demonstrate that eliminating RAGE 

appears to preserve pulmonary injury post-transplantation.

Elevated IL-10 in TBI RAGE−/− Mice and Recipients of Lungs from TBI RAGE−/− Mice

IL-4, IL-6, IL-17a, TNF-α, and IFNγ BAL levels did not differ among donor sham-injured 

controls, TBI wildtype, and TBI RAGE −/− donor mice (Fig 5A–E). However, RAGE −/− 

donor mice had significantly higher levels of the anti-inflammatory molecule, IL-10, in BAL 

fluid (MFI 530.0 ± 23) when compared with sham controls (MFI 331.5 ±16) or TBI 

wildtype mice (MFI 408.5 ±13) (p<0.01) (Fig. 5F). Cytokine profiling was also determined 

in BAL fluid of transplanted lungs of mice whose donors were either TBI wildtype or RAGE 
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−/− mice. These transplants were performed 24 hours after sham or TBI. Cytokine profiling 

in the BAL fluid of recipients 8 hours post-transplant revealed no differences in IL-4, IL-6, 

IFNγ, TNF-α, and between wildtype and RAGE−/− donor lungs (Fig. 5A,B,D,E). IL-17a 

was significantly lower in the BAL fluid of recipients when the left lung was derivedfrom a 

RAGE −/− TBI mice: 245 ± 63.4 versus 602 ± 33.2 for TBI wildtype C57BL/6 control mice 

(p<0.01, Fig. 5C). Similar to observations in mice subjected to TBI alone, IL-10 was 

significantly elevated in BAL from transplanted lungs from RAGE −/− TBI donors 

compared to transplanted lungs from wildtype C57BL/6 TBI donors (1846 ± 19.6 versus 

1241 ± 21.3, p<0.01, Fig. 5F).

HMGB1 Stimulates NF-κB Activation in Airway Epithelial Cells

In an effort to determine the downstream signaling pathways activated by HMGB1 binding 

to RAGE in the lungs, we stimulated rat alveolar type 2 epithelial cells with increasing 

concentrations of the non-oxidized (all-thiol) form of HMGB1 that binds only to RAGE. 

Translocation of NF-κB p65 and p50 from the cytoplasm to the nucleus, an indication of 

NF-κB activation, was enhanced 24 hours after stimulating AT2 cells with at least 10μg/mL 

of HMGB1 (Fig. 6).

Elevated donor HMGB1 correlates with poor blood oxygenation before and after human 
lung transplant

Blood was collected from human brain dead donors prior to procuring lungs to be utilized 

for bilateral lung transplants. Donor, recipient, and surgery specific characteristics are 

presented in Table 1. All blood samples were obtained from brain dead organ donors: 11 of 

the 18 died from TBI, the rest died of other causes including 4 from anoxia and 3 from 

stroke. The correlation between donor serum HMGB1 concentrations and the highest PaO2/

FiO2ratio prior to procurement was determined. HMGB1 concentrations correlated inversely 

with donor PaO2/FiO2 ratios, where high HMGB1 levels were associated with lower PAO2/

FIO2 ratios (p<0.01, Fig. 7A). This correlation was maintained when the data included only 

the subset of 11 donors that died from TBI (p=0.05, Fig. 7B). To examine the association 

between donor HMGB1 and recipient lung function, donor HMGB1 serum concentrations 

were correlated with recipient PaO2/FiO2ratios 48 hours after lung transplant. Linear 

regression revealed that donor HMGB1 concentrations also correlated inversely with 

recipient PaO2/FiO2ratios 48 hours after transplant, both in the 18 brain dead donors 

(p<0.01) as well as in the 11 TBI donors (p<0.01, Fig. 7C, D).

Discussion

Our results demonstrate that the HMGB1-RAGE ligand-receptor pathway serves as a central 

signal transduction mechanism for pulmonary dysfunction after TBI. TBI induced 

alterations in physiology and histology included reduced systemic arterial oxygen, decreased 

lung compliance, and pathology consistent with acute lung injury. These findings were 

RAGE-dependent as systemic oxygenation, lung compliance, and histology were restored 

almost completely to baseline in RAGE−/− mice subjected to TBI. Considering that a 

majority of lungs utilized for transplant are obtained from patients who have suffered a TBI, 

factors such as donor HMGB1 serum concentration may be predictive of lung function 
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before and after transplantation. Our current clinical data suggest that brain injury-induced 

HMGB1 release may have a role in donor and short-term recipient pulmonary function as 

well.

It is well established that pro-inflammatory molecules including HMGB1 are ligands for 

RAGE (25). Though initial reports suggested that extracellular HMGB1 released by necrotic 

and inflammatory cells functions as a late-acting cytokine mediating endotoxin-related 

lethality in mice (26) and cytokine synthesis in monocytes (27), there has been greater 

recognition that the effect of HMGB1 activation of RAGE has acute effects on leukocyte 

chemotaxis and vascular barrier disruption (28–30). Moreover, these effects may be 

important for sustaining inflammatory disease conditions alone (22) or in combination with 

toll-like receptors (31–34). Furthermore, our results with HMGB1 cortical staining 

demonstrating HMGB1 translocation from the nucleus after TBI agrees with reports 

demonstrating HMGB1 translocation and release after brain insult (35).

A recent report demonstrated that neutralization of HMGB1 may be a new treatment for 

brain injured animals due to reductions in brain edema and inflammation (36). Given our 

results, these beneficial effects can now be extended to the lungs. Given the ability of 

HMGB1 to bind to both RAGE and TLR4, our experimental outcomes implicate a 

pronounced role for RAGE as the lung dysfunction was more pronounced in the setting of 

TLR4 deficiency as compared to RAGE deficiency. One interpretation suggests that 

HMGB1-RAGE is instrumental for leukocyte infiltration while HMGB1-TLR4 may be 

responsible for cytokine production (37–40). Alternatively, it is known that HMGB1 can 

exist in either of two isoforms, all-thiol and disulfide, which have varying specificity for 

RAGE and TLR4. The all-thiol state of the isoform is first released into the extracellular 

space where it binds to RAGE and initiates chemoattraction of leukocytes (41). In contrast, 

the disulfide isoform exhibits a high affinity for TLR4 and induces the release of 

proinflammatory cytokines and mediators (42). Compared to the half-life of all-thiol (~17 

minutes), the disulfide isoform’s half life is significantly longer (up to 10 hours) (43). 

Considering the kinetic differences between the isoforms and the rapid induction of lung 

injury post TBI, it is apparent that the all-thiol form of HMGB1 binding to RAGE may be 

the primary pathway of lung injury in the current study. This finding is also supported by our 

data showing that the all-thiol form of HMGB1 induced NF-κB activation in airway 

epithelial cells. However, the exact contribution of both HMGB1 isoforms in TBI-induced 

lung injury is yet to be established.

The effects of the TAT-4BB decoy peptide and its ability to modulate TBI-induced 

inflammation is likely dependent on the adapter proteins common to both TLR4 and RAGE 

(22), though there is a suggestion that the HMGB1-TLR4-RAGE interaction is central to the 

downstream signaling (44). However, given the apparent commonality of downstream 

signaling for both TLR4 and RAGE, we hypothesize that decoy peptides would inhibit TBI-

associated changes in pulmonary tissue and physiology regardless of the signaling receptor.

Ligand-dependent activation of RAGE may modulate chemotactic actions of leukocytes. Our 

results reinforce prior reports that HMGB1 may stimulate RAGE activation of NF-κB (45), 

so it is conceivable that pulmonary dysfunction following TBI include the production of pro-
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inflammatory cytokines such as IL-6, TGF-β and IL-17a (45–48). However, the only 

cytokine that appeared to be altered in the BAL following injury was the anti-inflammatory 

cytokine, IL-10. Together with previous observations in a model of hemorrhagic shock (49) 

and a recent report suggesting that signaling via RAGE is linked to downregulation of IL-10, 

it appears that modulation of this important anti-inflammatory cytokine is regulated by 

RAGE activation. More importantly, it is possible that increased IL-10 concentrations could 

dampen the inflammatory process and mitigate injury to the pulmonary system. An example 

of such an effect may be evidenced by the beneficial effects of soluble RAGE administration 

in IL-10 null mice subjected to chronic colonic inflammation (50). In addition, IL-10 gene 

therapy has been utilized to repair donor human lungs prior to transplantation (51).

Other work using an ischemia reperfusion injury model demonstrated that the HMGB1-

RAGE pathway contributes to IL-17a production from invariant natural killer cells, which 

are crucial for the initiation of ischemia reperfusion injury (17). Our results corroborated this 

concept of HMGB1-RAGE mediated effects on cytokine production in ischemia reperfusion 

injury We observed decreased IL-17a protein expression in the BAL of recipients of RAGE

−/− TBI donor lungs as compared to recipients of wildtype TBI donor lungs. Additionally, 

the connection between RAGE and lung dysfunction has been studied outside of the setting 

of TBI. Circulating soluble RAGE was reported to be a marker of primary graft dysfunction, 

which is a form of ischemia reperfusion injury that occurs after lung transplantation (52).

Non-cytokine pathways have also been linked to TBI-induced lung injury. A recent report 

implicated high levels of glutamate after brain injury triggering acute lung injury mediated 

through interaction of the adenosine A2A receptor and the metabotropic glutamate receptor 

5 (mGluR5) on bone marrow-derived cells (53). This pathway may run in parallel to the 

HMGB1-RAGE axis with overlap of downstream signaling.

In summary, the current study demonstrates a mechanism of TBI-induced acute lung injury 

that includes a key role for the HMGB1-RAGE pathway. These data may be important for 

preventing pulmonary complications in patients after TBI. These findings could also have 

implications in the field of lung transplantation. Most lungs for transplantation are procured 

from patients after TBI. Remarkably, only 15–20% of such lungs are suitable for transplant 

due to abnormal physiology that includes impaired oxygenation, a critical parameter of lung 

function. Given that TBI has profound detrimental effects on pulmonary physiology, the 

current study suggests that targeting the RAGE-HMGB1 axis could serve as a new 

therapeutic approach to increase the quality of lungs suitable for transplantation.

Materials and Methods

Study Design

This study was designed to identify the role of the HMGB1-RAGE inflammatory pathway in 

TBI-induced pulmonary dysfunction. To do this, we utilized murine models of traumatic 

brain injury and lung transplantation in wildtype and transgenic mice as further described 

below to better understand the pathways at work. We also administered an HMGB1 

neutralizing antibody as well as a downstream signaling decoy peptide to further delineate 

the downstream signaling. Additionally, we utilized our institution’s prospectively collected 
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lung transplant biobank to correlate donor levels of HMGB1 with donor and recipient lung 

function.

Human Studies

All human studies were approved by the Indiana University Institutional Review Board. 

Additionally, all lung transplant recipients consented and all donor families consented for 

organ donation and research. Using a prospectively collected samples from lung transplant 

recipients and donors, we identified donor cause of death and donor serum levels of HMGB1 

using an ELISA kit (IBL International, Hamburg, Germany) and correlated with donor 

pulmonary function values and short-term recipient pulmonary values and outcomes.

Animals

All mice were housed in the Laboratory Animal Resource Center at Indiana University 

School of Medicine in accordance with institutional guidelines. All mice were 8–12 weeks 

of age and 24–32g and used as both donors and recipients. Mice were randomly assigned to 

groups. All studies were approved by the Laboratory Animal Resource Center at the Indiana 

University School of Medicine. Specific pathogen-free male inbred mice C57BL/6 were 

purchased from Harlan Sprague-Dawley (Indianapolis, IN). TLR4 −/− mice were purchased 

from Jackson Laboratory (Bar Harbor, ME) and RAGE −/− mice were obtained from onsite 

colonies (54).

Traumatic Brain Injury (TBI)

Mice were subjected either to a TBI using a controlled cortical impact model using an 

electromagnetic impactor (Impactor One™, MyNeuroLab) or sham-injury (55). The mice 

were anesthetized with isoflurane and ketamine and placed in a stereotaxic frame (Kopf 

Instruments, Tujunga, CA). The skull was exposed in the left fronto-pareital cortex using an 

electric drill. Prior to the injury, the impacting piston was angled so that the impacting tip (3 

mm in diameter) was perpendicular to the exposed cortical surface. This was accomplished 

by rotating the entire stereotaxic frame on the transverse plane. Sham control animals were 

exposed to anesthesia, skull exposure, and suturing without the cortical impact. The amount 

of deformation was set at either 0.5 mm (moderate injury) or 1.0 mm (severe injury). After 

injury, animals were allowed to recover and were able to eat and drink for 4–24 hours prior 

to harvest.

Serum and BAL

After euthanization, blood was obtained from the right ventricle and centrifuged (15 min; 

1500g; 4°C) and serum was isolated. For bronchoalveolar lavage (BAL), lungs were lavaged 

with aliquots totaling 3 ml of Ca2+- and Mg2+-free PBS supplemented with 0.1 mM EDTA. 

Samples were centrifuged (10 min; 1500g; 4°C).

Pulmonary Function Tests and Arterial Blood Gases

After inducing anesthesia with 1–2% Isoflurane, all mice were mechanically ventilated with 

a rodent ventilator using room air, at a rate of 140 breaths per minute, a tidal volume of 0.3 

ml, and 2 cmH2O of positive end-expiratory pressure. The animals were placed on a heated 
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(37C°) pad and pulmonary function tests were then performed with the Flexi Vent system 

(Scireq, Montreal, PQ, Canada). At the competition of pulmonary function testing, a 25 

gauge angiocatheter was placed at the junction of the left ventricle and ascending aorta and 

2–3 mL of arterial blood was obtained. This was run on an iSTAT point-of-care analyzer 

(Abbott Laboratories, Princeton, NJ). Subsequently, mice were euthanized and lungs 

harvested in 10% neutral buffered formalin.

Histology and Lung Injury Scoring

After mice were euthanized, native and donor lungs were harvested, glutaraldehyde-fixed, 

and paraffin embedded. A portion of the each lobe of each lung was sectioned and stained 

with hematoxylin and eosin. Lungs were stained with hematoxylin and eosin and scored by a 

blinded pathologist using the Lung Injury Scoring System from the American Thoracic 

Society Workshop Report (19). This criteria gives a continuous score between 0 (no injury) 

and 1 (severe injury). Additionally, immunohistochemistry was performed on lung sections 

for Caspase-3, a marker of apoptosis.

Myeloperoxidase Levels in BAL

BAL fluid from animals was collected and myeloperoxidase (MPO) levels were measured 

using an ELISA kit (Cell Sciences, Canton, MA) according to manufacturer’s instructions.

PET/CT Cardiac Output and Image Analysis

Cardiac output was calculated using Dynamic high resolution 18F-NaF Positron Emission 

Tomography (PET) Computed Topography (CT). Subsequently, CT and PET images were 

co-registered for image analysis and the Stewart-Hamitlon indicator dilution method was 

used to calculate cardiac output using a left ventricular time activity curve. The full details 

are available in the supplemental material.

TAT-4BB Decoy Peptide

TAT-4BB was obtained from GenScript (Piscataway, NJ) containing the essential amino acid 

sequence of the TAT domain with 4BB (YGRKKRRQRRR-LHYRDRIPGVAIAA). This 

was administered via a subcutaneous 24 hour micro-osmotic pump from Alzert (Cupertino, 

CA). Vehicle was used as a negative control.

Serum HMGB1 Measurement

HMGB1 serum levels were determined by using an ELISA kit (IBL International, Hamburg, 

Germany) according to manufacturer’s instructions.

HMGB1 Neutralizing Antibody

Neutralization of HMGB1 was accomplished by administering anti-HMGB1 chicken IgY 

neutralizing polyclonal antibody (IBL International, Toronto, ON) dosed at 2mg/kg both 30 

minutes prior to TBI. Isotype matched control antibodies were administered to control 

animals with the same dosing regimen. Additionally, immunohistochemistry was performed 

on paraffin-embedded mouse lungs against HMGB1 (ab18256, Abcam, Cambridge, MA) as 

previously described (56). Brain tissue was also stained was also performed using 
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immunocytochemical and immunohistochemical methodologies previously described (57). 

Cortical tissue was serially sectioned at 14 μm and was used in immunohistochemical 

experiments. The primary antisera used was the rabbit anti-HMGB1 antibody (1:1,000; 

Sigma Aldrich). Sections were incubated in secondary donkey ant-Rabbit conjugated to CY3 

(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA). Nuclear co-

localization with DAPI was also performed and images were imported into Image-Pro Plus 

(Media Cybernetics, Silver Spring, MD, USA) for quantification.

HMGB1 Stimulated NF-κB Activation in Airway Epithelial Cells

A cell culture of rat alveolar type 2 (AT2) cells were stimulated with increasing 

concentrations of non-oxidizable LPS-free HMGB1 (HMGBiotech, Milan, Italy) at 0, 5, 10, 

and 15ug/mL for 24 hours. Nuclear and cytosolic protein lysates were then collected and 

analyzed for p50 and p65 NF-κB by Western blot analysis. Further details are supplied in 

the supplemental materials.

Cytokine profiling by cytometric bead array (CBA)

BAL fluid from animals was collected and cytokine protein levels of IL-17A, IL-10, TNF-α, 

IFN-γ, IL-6, IL-4, and IL-2 were measured using the Mouse Th1/Th2/Th17 Cytokine Kit 

(BD Biosciences, San Jose, CA) according to manufacturer’s instructions.

Murine Orthotopic Left Lung Transplantation

All surgical procedures were performed utilizing sterile techniques in a previously described 

method (58) which is detailed in the supplemental materials.

Statistical Analysis

Data were normally distributed and analyzed statistically with GraphPad Prism (GraphPad 

Software Inc., San Diego, CA). Results are expressed as means ± SEM. Differences between 

groups were analyzed by unpaired t-tests and analysis of variance and Tukey post hoc test. 

Correlation coefficient between two variables was calculated with the Pearson correlation 

test. P values not exceeding 0.05 were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Acute lung injury in C57BL/6 mice 4–24 hours after TBI. Representative H/E histology 

sections of C57BL/6 mouse lungs after traumatic brain injury at various time points. (A) 

Control animals with sham TBI. (B) 4 hours after TBI with alveolar hemorrhage. (C) 8 

hours after TBI with alveolar hemorrhage. (D) 12 hours after TBI with interstitial 

neutrophils. (E) 24 hours after TBI with interstitial neutrophils. (F) Acute lung injury scores 

from a blinded pathologist based on a standardized scoring system from the American 

Thoracic Society (19). Scores are continuous between 0 and 1 with 0 representing no injury 

and 1 representing severe acute lung injury. (G) Albumin concentrations in BAL fluid after 

TBI. (H) Systemic concentrations of HMGB1 24 hours after severe TBI in the sham injured 

group as well as in C57BL/6 and RAGE −/− mice 24 hours after TBI. n=6–8 per condition, 

Student’s t test comparison with the reference sham injured group, comparisons versus 

sham-injured group, *p<0.01.
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Figure 2. 
PaO2/FiO2 ratios and compliance values derived from C57BL/6 and RAGE −/−mice 4–24 

hours after TBI. (A) PaO2/FiO2 ratios from controls without TBI and wildtype mice 4–24 

hours after TBI. (B) Static compliance values obtained via Pulmonary Function Testing from 

controls without TBI and wildtype mice 4–24 hours after TBI. (C) PaO2/FiO2 ratios from 

C57BL/6 and RAGE−/− 24 hours after TBI. Animals were administered either moderate or 

severe TBI. (D) Compliance values from controls and C57BL/6 and RAGE −/− mice 24 

hours after TBI. n=4–7 mice per condition, comparisons versus sham-injured group unless 
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otherwise indicated, *p<0.01 Statistical testing included unpaired t-tests and analysis of 

variance.
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Figure 3. 
PaO2/FiO2 ratios and compliance values 24 hours after TBI in RAGE −/−, TLR4 −/− mice 

treated with HMGB1 neutralizing antibody, and mice treated with TAT-4BB decoy peptide. 

(A) PaO2/FiO2 ratios in control mice and RAGE −/−, TLR4 −/− mice treated with HMGB1 

antibody or control antibody, or treated with 4BB (Myd-88) decoy peptide 24 hours after 

TBI. (B) Compliance values in RAGE −/−, TLR4 −/− mice treated with HMGB1 antibody 

or control antibody, or with 4BB decoy peptide 24 hours after TBI. n=5–7 per condition, 

comparisons versus sham-injured group unless otherwise indicated, *p≤0.01. Statistical 

testing included unpaired t-tests and analysis of variance.
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Figure 4. 
Histology and acute lung injury scores for transplanted left lungs from control donor mice, 

wildtype TBI donor mice, or RAGE−/− TBI donor mice. Representative H/E histology 

sections from transplanted lungs 5 days after transplant. (A) Transplanted left lung from 

healthy donor with sham TBI. (B) Transplanted left lung from wildtype TBI donor. (C) 

Transplanted left lung from RAGE−/− TBI donor. (D) Acute lung injury scores from 

transplant recipients who received lungs from three different donors: wildtype animals with 

sham TBI, wildtype animals with TBI, and RAGE −/− donors with TBI. n=6–8 per 

condition, comparison versus sham-injured group, *p<0.01. Statistical testing included 

unpaired t-tests and analysis of variance
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Figure 5. 
BAL cytokine profiles in control and injured donor mice 24 hours after TBI. Cytokine 

profiling was also performed in left lung transplant recipients of TBI donor lungs 8 hours 

after transplant. (A–F) Mean Fluorescence Intensity of IL-4, IL-6, IL-17a, IFN-γ, TNF-α, 

IL-17A, and IL-10. n=5–7 per condition, *p<0.01. Statistical testing included unpaired t-

tests and analysis of variance
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Figure 6. 
Representative Western blot of NF-κB activation in rat alveolar type 2 (AT2) cells following 

exposure to HMGB1. (A) NF-κB p65 and p50 translocation from the cytoplasm to the 

nucleus demonstrated by stimulating AT2 cells with 0, 5, or 10 μg/mL of HMGB1 for 24 

hours. (B–E) Densitometric analysis was performed using GAPDH as a loading control for 

the cytoplasmic samples and Lamin B1 as a loading control for the intranuclear samples.
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Figure 7. 
PaO2/FiO2 ratios in lung transplant donors and recipients based on donor HMGB1 serum 

concentrations at the time of harvest. (A) PaO2/FiO2 ratios among all brain dead donors, 

regardless of mechanism of injury correlated with donor HMGB1 serum concentrations at 

harvest. (B) PaO2/FiO2 ratios among brain dead donors whose mechanism of injury was 

TBI, and donor HMGB1 serum concentrations at harvest. (C) Recipient PaO2/FiO2 ratios at 

48 hours after transplant correlated with donor HMGB1 serum concentrations at harvest. (D) 

Recipient PaO2/FiO2 ratios at 48 hours after transplant from brain dead donors whose 
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mechanism of injury was TBI correlated with donor HMGB1 serum concentrations at 

harvest.
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Table 1

Donor, Recipient, and Surgery Characteristics (n=18)

Donor Characteristics

Male sex, n (%) 7 (39)

Age, mean 34.2

Mode of death, n (%)

 Traumatic Brain Injury 11 (61)

 Anoxia 4 (22)

 Stroke 3 (17)

Race, n (%)

 White 12 (67)

 African American 5 (28)

 Other 1 (6)

Recipient Characteristics

Male sex, n (%) 11 (61)

Age, mean 55.3

Pulmonary Diagnosis

 COPD 11 (61)

 Idiopathic Pulmonary Fibrosis 5 (28)

 Pulmonary Arterial Hypertension 1 (6)

 Cystic Fibrosis 1 (6)

Surgery Characteristics

Transplant type, double, n (%) 18 (100)

Ischemia time in mins, mean 314

18 bilateral lung transplants were performed and donor, recipient, and operative variables were recorded. All donor lungs were donated after brain 
death.

Sci Transl Med. Author manuscript; available in PMC 2017 May 31.


	Abstract
	Introduction
	Results
	TBI Induces Acute Lung Injury and Increased Systemic HMGB1
	RAGE and HMGB1 Profiling
	TBI Induces Pulmonary Dysfunction
	Pulmonary Dysfunction due to TBI is diminished in the lungs of RAGE−/− mice
	TBI causes Lung Dysfunction in TLR4 −/− Mice
	Effect of Neutralizing HMGB1 on Lung Dysfunction
	Preservation of Lung Function using a Toll/IL-1 receptor domain-derived decoy peptide
	TBI induces pulmonary dysfunction in the setting of preserved cardiac output
	Murine lung transplant recipients from TBI donors exhibit elevated lung injury scores compared to recipients from RAGE −/− TBI donors
	Elevated IL-10 in TBI RAGE−/− Mice and Recipients of Lungs from TBI RAGE−/− Mice
	HMGB1 Stimulates NF-κB Activation in Airway Epithelial Cells
	Elevated donor HMGB1 correlates with poor blood oxygenation before and after human lung transplant

	Discussion
	Materials and Methods
	Study Design
	Human Studies
	Animals
	Traumatic Brain Injury (TBI)
	Serum and BAL
	Pulmonary Function Tests and Arterial Blood Gases
	Histology and Lung Injury Scoring
	Myeloperoxidase Levels in BAL
	PET/CT Cardiac Output and Image Analysis
	TAT-4BB Decoy Peptide
	Serum HMGB1 Measurement
	HMGB1 Neutralizing Antibody
	HMGB1 Stimulated NF-κB Activation in Airway Epithelial Cells
	Cytokine profiling by cytometric bead array (CBA)
	Murine Orthotopic Left Lung Transplantation
	Statistical Analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

