333 research outputs found

    Filling the void - enriching the feature space of successful stopping

    Get PDF
    The ability to inhibit behavior is crucial for adaptation in a fast changing environment and is commonly studied with the stop signal task. Current EEG research mainly focuses on the N200 and P300 ERPs and corresponding activity in the theta and delta frequency range, thereby leaving us with a limited understanding of the mechanisms of response inhibition. Here, 15 functional networks were estimated from time-frequency transformed EEG recorded during processing of a visual stop signal task. Cortical sources underlying these functional networks were reconstructed, and a total of 45 features, each representing spectrally and temporally coherent activity, were extracted to train a classifier to differentiate between go and stop trials. A classification accuracy of 85.55% for go and 83.85% for stop trials was achieved. Features capturing fronto-central delta- and theta activity, parieto-occipital alpha, fronto-central as well as right frontal beta activity were highly discriminating between trial-types. However, only a single network, comprising a feature defined by oscillatory activity below 12 Hz, was associated with a generator in the opercular region of the right inferior frontal cortex and showed the expected associations with behavioral inhibition performance. This study pioneers by providing a detailed ranking of neural features regarding their information content for stop and go differentiation at the single-trial level, and may further be the first to identify a scalp EEG marker of the inhibitory control network. This analysis allows for the characterization of the temporal dynamics of response inhibition by matching electrophysiological phenomena to cortical generators and behavioral inhibition performanc

    Return Rates and Recovery Options of Used Electric Vehicle Traction Batteries in Germany = Rücklaufmengen und Verwertungswege von Altbatterien aus Elektromobilen in Deutschland

    Get PDF
    Die Elektromobilität wird als Schlüsseltechnologie zur Senkung der CO2_{2}-Emissionen im Straßenverkehr gesehen. In der Diskussion um die Klimabilanz der Elektromobilität wird allerdings der hohe ökologische Fußabdruck in der Herstellung batterieelektrischer Fahrzeuge wenig adressiert, der sich insb. durch die ressourcenintensive Traktionsbatterie ergibt. Neben der Bereitstellung von regenerativem Ladestrom ist eine effiziente Kreislaufführung der Batteriematerialien und eine möglichst lange Nutzung der Batteriesysteme und Komponenten Voraussetzung für die nachhaltige Gestaltung der Elektromobilität. Der vorliegende Beitrag gibt einen Überblick zur kreislaufwirtschaftlichen Wertschöpfungskette von obsoleten Traktionsbatterien aus Elektromobilen. Mithilfe eines systemdynamischen und eines ereignisdiskreten Simulationsansatzes werden zukünftige Rücklaufmengen obsoleter Traktionsbatterien auf Basis aktueller Diffusionsszenarien abgeschätzt sowie unterschiedliche Verwertungsoptionen von 2nd-Life-Konzepten bis hin zu alternativen Recyclingverfahren dargestellt und diskutiert

    Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation

    Get PDF
    Autoimmune diseases are driven by immune cells that recognize self-tissues. A major goal for treatment strategies for autoimmune diseases is to turn off or tolerize self-reactive immune cells such as CD4 T cells that coordinate tissue damage in many autoimmune diseases. Autoimmune diseases are often diagnosed many years following their onset. The self-reactive CD4 T cells that must be tolerized, therefore, are previously activated or memory CD4 T cells. Little is known about whether tolerance can be induced in memory CD4 T cells. This paper demonstrates that memory CD4 T cells survive initial exposure to tolerance-inducing signals but that a second activation signal leads to cell death. This study has important implications for immunotherapeutic strategies for autoimmune diseases

    Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task

    Get PDF
    Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations

    Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    Get PDF
    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments

    Subcellular distribution of glutathione and cysteine in cyanobacteria

    Get PDF
    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria

    Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse

    Get PDF
    International audienceMemory CD8(+) T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8(+) T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+) T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+) T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+) T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+) T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+) T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+) T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+) T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+) T cells provide a local response by secreting effector molecules around infected cells
    corecore