395 research outputs found
On the formation fo caldera-like features on Ganymede: implicatoins from Galileo-G28 images
Topographic data are used to find implications for the formation of Caldera-like Features on Ganymede
Multiple episodes of star formation in the CN15/16/17 molecular complex
We have started a campaign to identify massive star clusters inside bright
molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex
is the first example of our study. The region is characterized by the presence
of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII
region identified in the radio, several young stellar objects visible in the
MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm
continuum emission revealing the presence of cold dust. Given its position on
the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region
was thought to be a very massive site of star formation in proximity of the
CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the
region's properties were known only through photometry and its kinematic
distance was very uncertain given its location at the tangential point. We
aimed at better characterizing the region and assess whether it could be a site
of massive star formation located close to the Galactic Center. We have
obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the
brightest members. We have additionally collected data in the radio, sub-mm and
mid infrared, resulting in a quite different picture of the region. We have
confirmed the presence of massive early B type stars and have derived a
spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic
distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170
M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O
star, confirmed by the excitation/ionization status of the nebula. No HeI
diffuse emission is detected in our spectroscopic observations at 2.113\mu m,
which would be expected if the region was hosting more massive stars. Radio
continuum measurements are also consistent with the region hosting at most
early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3
presented in reduced resolutio
Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited
This report is a review of Darwin's classical theory of bodily tides in which
we present the analytical expressions for the orbital and rotational evolution
of the bodies and for the energy dissipation rates due to their tidal
interaction. General formulas are given which do not depend on any assumption
linking the tidal lags to the frequencies of the corresponding tidal waves
(except that equal frequency harmonics are assumed to span equal lags).
Emphasis is given to the cases of companions having reached one of the two
possible final states: (1) the super-synchronous stationary rotation resulting
from the vanishing of the average tidal torque; (2) the capture into a 1:1
spin-orbit resonance (true synchronization). In these cases, the energy
dissipation is controlled by the tidal harmonic with period equal to the
orbital period (instead of the semi-diurnal tide) and the singularity due to
the vanishing of the geometric phase lag does not exist. It is also shown that
the true synchronization with non-zero eccentricity is only possible if an
extra torque exists opposite to the tidal torque. The theory is developed
assuming that this additional torque is produced by an equatorial permanent
asymmetry in the companion. The results are model-dependent and the theory is
developed only to the second degree in eccentricity and inclination
(obliquity). It can easily be extended to higher orders, but formal accuracy
will not be a real improvement as long as the physics of the processes leading
to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo
Surface albedo changes with time on Titanâs possible cryovolcanic sites: Cassini/VIMS processing and geophysical implications
We present a study on Titanâs possibly cryovolcanic and varying regions as suggested from previous studies [e.g. 1;2;7]. These regions, which are potentially subject to change over time in brightness and are located close to the equator, are Tui Regio, Hotei Regio, and Sotra Patera. We apply two methods on Cassini/VIMS data in order to retrieve their surface properties and monitor any temporal variations. First, we apply a statistical method, the Principal Component Analysis (PCA) [3;4] where we manage to isolate regions of distinct and diverse chemical composition called âRegion of interest â RoIâ. Then, we focus on retrieving the spectral differences (with respect to the Huygens landing site albedo) among the RoIs by applying a radiative transfer code (RT) [5;3]. Hence, we are able to view the dynamical range and evaluate the differences in surface albedo within the RoIs of the three regions. In addition, using this double procedure, we study the temporal surface variations of the three regions witnessing albedo changes with time for Tui Regio from 2005-2009 (darkening) and Sotra Patera from 2005-2006 (brightening) at all wavelengths [3]. The surface albedo variations and the presence of volcanic-like features within the regions in addition to a recent study [6] that calculates Titan's tidal response are significant indications for the connection of the interior with the cryovolcanic candidate features with implications for the satelliteâs astrobiological potential
The Europa Clipper Gravity and Radio Science Investigation
The primary objective of the Europa Clipper mission is to assess the habitability of Europa, an overarching goal that rests on improving our understanding of Europaâs interior structure, composition, and geologic activity. Here we describe the Gravity and Radio Science (G/RS) investigation. The primary measurement, the gravitational tidal Love number k2 , will be an independent diagnostic of the presence of a global subsurface ocean, but G/RS will make a number of other key measurements related to Europaâs deep interior, silicate mantle-ocean interface, ice shell, ionosphere, and plasma environment. Although radio science is common to many missions, Europa Clipperâs orbit and spacecraft configuration during flybys present special challenges for the design of this experiment. The information obtained through G/RS will be complementary to the measurements by the other instruments onboard Europa Clipper, and their combined analysis will refine the geophysical understanding of Europa necessary to best assess its potential habitability
Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208
We have undertaken a thorough dynamical investigation of five extrasolar
planetary systems using extensive numerical experiments. The systems Gl 777 A,
HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of
whether they could host terrestrial like planets in their habitable zones
(=HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar
systems. Then a fine grid of initial conditions for a potential terrestrial
planet within the HZ was chosen for each system, from which the stability of
orbits was then assessed by direct integrations over a time interval of 1
million years. The computations were carried out using a Lie-series integration
method with an adaptive step size control. This integration method achieves
machine precision accuracy in a highly efficient and robust way, requiring no
special adjustments when the orbits have large eccentricities. The stability of
orbits was examined with a determination of the Renyi entropy, estimated from
recurrence plots, and with a more straight forward method based on the maximum
eccentricity achieved by the planet over the 1 million year integration.
Additionally, the eccentricity is an indication of the habitability of a
terrestrial planet in the HZ; any value of e>0.2 produces a significant
temperature difference on a planet's surface between apoapse and periapse. The
results for possible stable orbits for terrestrial planets in habitable zones
for the five systems are summarized as follows: for Gl 777 A nearly the entire
HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive
for a sufficiently long time, while for Gl 614 our results exclude terrestrial
planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&
Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries
Critical soft tissue injuries may lead to a non-functional and insensate limb. In these cases standard reconstructive techniques will not suffice to provide a useful outcome, and solutions outside the biological arena must be considered and offered to these patients. We propose a concept which, after all reconstructive options have been exhausted, involves an elective amputation along with a bionic substitution, implementing an actuated prosthetic hand via a structured tech-neuro-rehabilitation program. Here, three patients are presented in whom this concept has been successfully applied after mutilating hand injuries. Clinical tests conducted before, during and after the procedure, evaluating both functional and psychometric parameters, document the benefits of this approach. Additionally, in one of the patients, we show the possibility of implementing a highly functional and natural control of an advanced prosthesis providing both proportional and simultaneous movements of the wrist and hand for completing tasks of daily living with substantially less compensatory movements compared to the traditional systems. It is concluded that the proposed procedure is a viable solution for re-gaining highly functional hand use following critical soft tissue injuries when existing surgical measures fail. Our results are clinically applicable and can be extended to institutions with similar resources
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
BepiColombo-Mission Overview and Science Goals
BepiColombo is a joint mission between the European Space Agency, ESA, and the Japanese Aerospace Exploration Agency, JAXA, to perform a comprehensive exploration of Mercury. Launched on 20th October 2018 from the European spaceport in Kourou, French Guiana, the spacecraft is now en route to Mercury. Two orbiters have been sent to Mercury and will be put into dedicated, polar orbits around the planet to study the planet and its environment. One orbiter, Mio, is provided by JAXA, and one orbiter, MPO, is provided by ESA. The scientific payload of both spacecraft will provide detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. Mercury is the planet closest to the Sun, the only terrestrial planet besides Earth with a self-sustained magnetic field, and the smallest planet in our Solar System. It is a key planet for understanding the evolutionary history of our Solar System and therefore also for the question of how the Earth and our Planetary System were formed. The scientific objectives focus on a global characterization ofMercury through the investigation of its interior, surface, exosphere, and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein's theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload such that individual measurements can be interrelated and complement each other.Peer reviewe
- âŠ