56 research outputs found

    Molecular diet analysis of two african free-tailed bats (molossidae) using high throughput sequencing.

    Get PDF
    Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5' tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated.This study was supported by Bat Conservation International, Etatsraad Georg Bestle og Hustrus Mindelegat and the Oticon Fonden (KB and CN), the Danish Council for Independent Research Natural Sciences ‘Skou’ award (MTPG), and a Natural Sciences and Engineering Research Council of Canada post-doctoral fellowship (ELC). These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This study was also supported by the Royal Swaziland Sugar Corporation, who provided field assistance and therefore had a role in data collection

    Early development of infants with neurofibromatosis type 1: a case series

    Get PDF
    Background Prospective studies of infants at familial risk for autism spectrum disorder (ASD) have yielded insights into the earliest signs of the disorder but represent heterogeneous samples of unclear aetiology. Complementing this approach by studying cohorts of infants with monogenic syndromes associated with high rates of ASD offers the opportunity to elucidate the factors that lead to ASD. Methods We present the first report from a prospective study of ten 10-month-old infants with neurofibromatosis type 1 (NF1), a monogenic disorder with high prevalence of ASD or ASD symptomatology. We compared data from infants with NF1 to a large cohort of infants at familial risk for ASD, separated by outcome at age 3 of ASD (n = 34), atypical development (n = 44), or typical development (n = 89), and low-risk controls (n = 75). Domains assessed at 10 months by parent report and examiner observation include cognitive and adaptive function, sensory processing, social engagement, and temperament. Results Infants with NF1 showed striking impairments in motor functioning relative to low-risk infants; this pattern was seen in infants with later ASD from the familial cohort (HR-ASD). Both infants with NF1 and the HR-ASD group showed communication delays relative to low-risk infants. Conclusions Ten-month-old infants with NF1 show a range of developmental difficulties that were particularly striking in motor and communication domains. As with HR-ASD infants, social skills at this age were not notably impaired. This is some of the first information on early neurodevelopment in NF1. Strong inferences are limited by the sample size, but the findings suggest implications for early comparative developmental science and highlight motor functioning as an important domain to inform the development of relevant animal models. The findings have clinical implications in indicating an important focus for early surveillance and remediation in this early diagnosed genetic disorder

    Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation

    Get PDF
    Purpose By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). Methods We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. Results We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. Conclusion The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS.</p

    Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation.

    Get PDF
    Funder: Children’s Tumor Foundation; doi: https://doi.org/10.13039/http://dx.doi.org/10.13039/100001545PURPOSE: By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). METHODS: We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. CONCLUSION: The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS

    Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation

    Get PDF
    Purpose By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). Methods We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. Results We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. Conclusion The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Spinal and cutaneous schwannomatosis is a variant form of type 2 neurofibromatosis: a clinical and molecular study.

    No full text
    OBJECTIVE: To delineate the clinical phenotype, molecular basis, and implications for screening in patients and families with multiple schwannomas not generally involving the cranium. METHODS: As part of a United Kingdom clinical and genetic study of type 2 neurofibromatosis (NF2) patients and families with multiple schwannomas who do not fulfil diagnostic criteria for NF2 have been identified. The clinical phenotype was studied in the extended families and molecular analysis was carried out at the NF2 gene locus on chromosome 22. RESULTS: Patterns of inheritance in five families with schwannomatosis are consistent with inheritance of an autosomal dominant gene. The consistency of phenotype, with relative sparing of the cranium, is constant in these families. However, families which initially seem to be indicative of schwannomatosis may develop into classic NF2 as shown by a sixth family. Many of the tumours found in these families were referred to as "neurofibroma" when they were clearly schwannomas. This difference in classification has major implications for the relative risk of each particular type of neurofibromatosis and neuropathological review may be important in some cases. Genetic linkage analysis in the two largest families is entirely consistent with primary involvement of the NF2 gene. CONCLUSIONS: Variant forms of neurofibromatosis have presented a dilemma in classification and determination of recurrence risks in families. Previous reports have suggested that schwannomatosis is a sporadic non-hereditary condition. Patients with multiple schwannomas are likely to have a variant form of NF2 and up to a 50% risk of passing on a gene predisposing to multiple schwannoma
    corecore