209 research outputs found

    Botanical gardens as key resources and hazards for biosecurity

    Get PDF
    Biodiversity and economic losses resulting from invasive plant pests and pathogens are increasing globally. For these impacts and threats to be managed effectively, appropriate methods of surveillance, detection and identification are required. Botanical gardens provide a unique opportunity for biosecurity as they accommodate diverse collections of exotic and native plant species. These gardens are also often located close to high-risk sites of accidental invasions such as ports and urban areas. This, coupled with routine activities such as the movement of plants and plant material, and visits by millions of people each year, place botanical gardens at risk to the arrival and establishment of pests and pathogens. Consequently, botanical gardens can pose substantial biosecurity risks to the environment, by acting as bridgeheads for pest and pathogen invasions. Here we review the role of botanical gardens in biosecurity on a global scale. The role of botanical gardens has changed over time. Initially, they were established as physic gardens (gardens with medicinal plants), and their links with academic institutions led to their crucial role in the accumulation and dissemination of botanical knowledge. During the second half of the 20th century, botanical gardens developed a strong focus on plant conservation, and in recent years there has been a growing acknowledgement of their value in biosecurity research as sentinel sites to identify pest and pathogen risks (novel pest-host associations); for early detection and eradication of pests and pathogens; and for host range studies. We identify eight specific biosecurity hazards associated with botanical gardens and note potential management interventions and the opportunities these provide for improving biosecurity. We highlight the value of botanical gardens for biosecurity and plant health research in general, and the need for strategic thinking, resources, and capacity development to make them models for best practices in plant health

    Field theory of the photon self-energy in a medium with a magnetic field and the Faraday effect

    Full text link
    A convenient and general decomposition of the photon self-energy in a magnetized, but otherwise isotropic, medium is given in terms of the minimal set of tensors consistent with the transversality condition. As we show, the self-energy in such a medium is completely parametrized in terms of nine independent form factors, and they reduce to three in the long wavelength limit. We consider in detail an electron gas with a background magnetic field, and using finite temperature field theory methods, we obtain the one-loop formulas for the form factors, which are exact to all orders in the magnetic field. Explicit results are derived for a variety of physical conditions. In the appropriate limits, we recover the well-known semi-classical results for the photon dispersion relations and the Faraday effect. In more general cases, where the semi-classical treatment or the linear approximation (weak field limit) are not applicable, our formulas provide a consistent and systematic way for computing the self-energy form factors and, from them, the photon dispersion relations.Comment: Revtex, 27 page

    A review of the Dividend Discount Model: from deterministic to stochastic models

    Get PDF
    This chapter presents a review of the dividend discount models starting from the basic models (Williams 1938, Gordon and Shapiro 1956) to more recent and complex models (Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018) with a focus on the modelling of the dividend process rather than the discounting factor, that is assumed constant in most of the models. The Chapter starts with an introduction of the basic valuation model with some general aspects to consider when performing the computation. Then, Section 1.3 presents the Gordon growth model (Gordon 1962) with some of its extensions (Malkiel 1963, Fuller and Hsia 1984, Molodovsky et al. 1965, Brooks and Helms 1990, Barsky and De Long 1993), and reports some empirical evidence. Extended reviews of the Gordon stock valuation model and its extensions can be found in Kamstra (2003) and Damodaran (2012). In Section 1.4, the focus is directed to more recent advancements which make us of the Markov chain to model the dividend process (Hurley and Johnson 1994, Yao 1997, Hurley and Johnson 1998, Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018). The advantage of these models is the possibility to obtain a different valuation that depends on the state of the dividend series, allowing the model to be closer to reality. In addition, these models permit to obtain a measure of the risk of the single stock or a portfolio of stocks

    Carbon clusters near the crossover to fullerene stability

    Get PDF
    The thermodynamic stability of structural isomers of C24\mathrm{C}_{24}, C26\mathrm{C}_{26}, C28\mathrm{C}_{28} and C32\mathrm{C}_{32}, including fullerenes, is studied using density functional and quantum Monte Carlo methods. The energetic ordering of the different isomers depends sensitively on the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo calculations predict that a C24\mathrm{C}_{24} isomer is the smallest stable graphitic fragment and that the smallest stable fullerenes are the C26\mathrm{C}_{26} and C28\mathrm{C}_{28} clusters with C2v\mathrm{C}_{2v} and Td\mathrm{T}_{d} symmetry, respectively. These results support proposals that a C28\mathrm{C}_{28} solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper and related information see http://www.tcm.phy.cam.ac.uk/~prck

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Gamma Ray Bursts as Probes of Quantum Gravity

    Full text link
    Gamma ray bursts (GRBs) are short and intense pulses of Îł\gamma-rays arriving from random directions in the sky. Several years ago Amelino-Camelia et al. pointed out that a comparison of time of arrival of photons at different energies from a GRB could be used to measure (or obtain a limit on) possible deviations from a constant speed of light at high photons energies. I review here our current understanding of GRBs and reconsider the possibility of performing these observations.Comment: Lectures given at the 40th winter school of theretical physics: Quantum Gravity and Phenomenology, Feb. 2004 Polan

    VERITAS: the Very Energetic Radiation Imaging Telescope Array System

    Get PDF
    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) represents an important step forward in the study of extreme astrophysical processes in the universe. It combines the power of the atmospheric Cherenkov imaging technique using a large optical reflector with the power of stereoscopic observatories using arrays of separated telescopes looking at the same shower. The seven identical telescopes in VERITAS, each of aperture 10 m, will be deployed in a filled hexagonal pattern of side 80 m; each telescope will have a camera consisting of 499 pixels with a field of view of 3.5 deg VERITAS will substantially increase the catalog of very high energy (E > 100GeV) gamma-ray sources and greatly improve measurements of established sources.Comment: 44 pages, 16 figure

    Discovery of a radio transient in M81

    Get PDF
    We report the discovery of a radio transient in the spiral galaxy M81. The transient was detected in early 2015 as part of a two-year survey of M81 made up of 12 epochs using the Karl G. Jansky Very Large Array. While undetected on 2014 September 12, the source was first detected on 2015 January 2, from which point it remained visible at an approximately constant luminosity of LR, Îœ = 1.5 ± 0.1 × 1024 erg s−1 Hz−1 at the observing frequency of 6 GHz for at least 2 months. Assuming this is a synchrotron event with a rise-time between 2.6 and 112 d, the peak luminosity (at equipartition) corresponds to a minimum energy of 1044 ≟ Emin ≟ 1046 erg and jet power of Pmin ∌ 1039 erg s−1, which are higher than most known X-ray binaries. Given its longevity, lack of short-term radio variability, and the absence of any multiwavelength counterpart (X-ray luminosity Lx ≟ 1036 erg s−1), it does not behave like known Galactic or extragalactic X-ray binaries. The M81 transient radio properties more closely resemble the unidentified radio transient 43.78+59.3 discovered in M82, which has been suggested to be a radio nebula associated with an accreting source similar to SS 433. One possibility is that both the new M81 transient and the M82 transient may be the birth of a short-lived radio bubble associated with a discrete accretion event similar to those observed from the ULX Holmberg II X-1. However, it is not possible to rule out other identifications including long-term supernova shockwave interactions with the surrounding medium from a faint supernova or a background active galaxy
    • 

    corecore