20 research outputs found

    Dileptons and Photons from Coarse-Grained Microscopic Dynamics and Hydrodynamics Compared to Experimental Data

    Get PDF
    Radiation of dileptons and photons from high energy nuclear collisions provides information on the space-time evolution of the hot dense matter produced therein. We compute this radiation using relativistic hydrodynamics and a coarse-grained version of the microscopic event generator UrQMD, both of which provide a good description of the hadron spectra. The currently most accurate dilepton and photon emission rates from perturbative QCD and from experimentally-based hadronic calculations are used. Comparisons are made to data on central Pb-Pb and Pb-Au collisions taken at the CERN SPS at a beam energy of 158 A GeV. Both hydrodynamics and UrQMD provide very good descriptions of the photon transverse momentum spectrum measured between 1 and 4 GeV, but slightly underestimate the low mass spectrum of e+e- pairs, even with greatly broadened rho and omega vector mesons. Predictions are given for the transverse momentum distribution of dileptons.Comment: 35 pages, 17 figure

    Quasi-Particle Theory of Shear and Bulk Viscosities of Hadronic Matter

    Full text link
    A theoretical framework for the calculation of shear and bulk viscosities of hadronic matter at finite temperature is presented. The framework is based on the quasi-particle picture. It allows for an arbitrary number of hadron species with point-like interactions, and allows for both elastic and inelastic collisions. Detailed balance is ensured. The particles have temperature dependent masses arising from mean field or potential effects, which maintains self-consistency between the equation of state and the transport coefficients. As an example, we calculate the shear and bulk viscosity in the linear σ\sigma model. The ratio of shear viscosity to entropy density shows a minimum in the vicinity of a rapid crossover transition, while the ratio of bulk viscosity to entropy density shows a maximum.Comment: 45 page

    Emission of thermal photons and the equilibration time in Heavy-Ion collisions

    Get PDF
    The emission of hard real photons from thermalized expanding hadronic matter is dominated by the initial high-temperature expansion phase. Therefore, a measurement of photon emission in ultrarelativistic heavy-ion collisions provides valuable insights into the early conditions realized in such a collision. In particular, the initial temperature of the expanding fireball or equivalently the equilibration time of the strongly interacting matter are of great interest. An accurate determination of these quantities could help to answer the question whether or not partonic matter (the quark gluon plasma) is created in such collisions. In this work, we investigate the emission of real photons using a model which is based on the thermodynamics of QCD matter and which has been shown to reproduce a large variety of other observables. With the fireball evolution fixed beforehand, we are able to extract limits for the equilibration time by a comparison with photon emission data measured by WA98.Comment: 12 pages, 5 figures, accepted for publication at Phys. Rev.

    A Family of Equations of State Based on Lattice QCD: Impact on Flow in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We construct a family of equations of state within a quasiparticle model by relating pressure, energy density, baryon density and susceptibilities adjusted to first-principles lattice QCD calculations. The relation between pressure and energy density from lattice QCD is surprisingly insensitive to details of the simulations. Effects from different lattice actions, quark masses and lattice spacings used in the simulations show up mostly in the quark-hadron phase transition region which we bridge over by a set of interpolations to a hadron resonance gas equation of state. Within our optimized quasiparticle model we then examine the equation of state along isentropic expansion trajectories at small net baryon densities, as relevant for experiments and hydrodynamic simulations at RHIC and LHC energies. We illustrate its impact on azimuthal flow anisotropies and transverse momentum spectra of various hadron species

    Hydrodynamical Description of 200 A GeV/c S+Au Collisions: Hadron and Electromagnetic Spectra

    Full text link
    We study relativistic S+Au collisions at 200 A GeV/c using a hydrodynamical approach. We test various equations of state (EOSs), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electro-magnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. With regard to the CERES dilepton data, none of the EOSs considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the rho peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS.Comment: Uses REVTeX, 48 pages, 13 Postscript figure

    The QCD confinement transition: hadron formation

    Full text link
    We review the foundations and the applications of the statistical and the quark recombination model as hadronization models.Comment: 45 pages, 16 figures, accepted for publication in Landolt-Boernstein Volume 1-23

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore