10 research outputs found

    Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near <it>MS4A4A, CD2AP, EPHA1 </it>and <it>CD33</it>. Meta-analyses of this and a previously published GWAS revealed significant association at <it>ABCA7 </it>and <it>MS4A</it>, independent evidence for association of <it>CD2AP, CD33 </it>and <it>EPHA1 </it>and an opposing yet significant association of a variant near <it>ARID5B</it>. In this study, we genotyped five variants (in or near <it>CD2AP, EPHA1, ARID5B</it>, and <it>CD33</it>) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and <it>APOE ε4 </it>dosage.</p> <p>Results</p> <p>We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for <it>EPHA1 </it>(rs11767557; OR = 0.87, p = 5 × 10<sup>-4</sup>) and <it>CD33 </it>(rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two <it>ARID5B </it>variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the <it>CD2AP </it>variant (rs9349407, p = 0.56).</p> <p>Conclusions</p> <p>Our data overwhelmingly support the association of <it>EPHA1 </it>and <it>CD33 </it>variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10<sup>-15 </sup>(<it>EPHA1</it>) and 1.8 × 10<sup>-13 </sup>(<it>CD33</it>).</p

    Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

    Get PDF
    Background Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology. Results Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01). Conclusions Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology

    Linking Protective <i>GAB2</i> Variants, Increased Cortical <i>GAB2</i> Expression and Decreased Alzheimer’s Disease Pathology

    Get PDF
    <div><p>GRB-associated binding protein 2 (<i>GAB2</i>) represents a compelling genome-wide association signal for late-onset Alzheimer’s disease (LOAD) with reported odds ratios (ORs) ranging from 0.75–0.85. We tested eight <i>GAB2</i> variants in four North American Caucasian case-control series (2,316 LOAD, 2,538 controls) for association with LOAD. Meta-analyses revealed ORs ranging from (0.61–1.20) with no significant association (all p>0.32). Four variants were hetergeneous across the populations (all p<0.02) due to a potentially inflated effect size (OR = 0.61–0.66) only observed in the smallest series (702 LOAD, 209 controls). Despite the lack of association in our series, the previously reported protective association for <i>GAB2</i> remained after meta-analyses of our data with all available previously published series (11,952-22,253 samples; OR = 0.82–0.88; all p<0.04). Using a freely available database of lymphoblastoid cell lines we found that protective <i>GAB2</i> variants were associated with increased <i>GAB2</i> expression (p = 9.5×10<sup>−7</sup>−9.3×10<sup>−6</sup>). We next measured <i>GAB2</i> mRNA levels in 249 brains and found that decreased neurofibrillary tangle (r = −0.34, p = 0.0006) and senile plaque counts (r = −0.32, p = 0.001) were both good predictors of increased <i>GAB2</i> mRNA levels albeit that sex (r = −0.28, p = 0.005) may have been a contributing factor. In summary, we hypothesise that <i>GAB2</i> variants that are protective against LOAD in some populations may act functionally to increase <i>GAB2</i> mRNA levels (in lymphoblastoid cells) and that increased <i>GAB2</i> mRNA levels are associated with significantly decreased LOAD pathology. These findings support the hypothesis that Gab2 may protect neurons against LOAD but due to significant population heterogeneity, it is still unclear whether this protection is detectable at the genetic level.</p></div

    Genome-wide Screen Identifies rs646776 near Sortilin as a Regulator of Progranulin Levels in Human Plasma

    No full text
    Recent studies suggest progranulin (GRN) is a neurotrophic factor. Loss-of-function mutations in the progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Using an enzyme-linked immunosorbent assay, we previously showed that GRN is detectable in human plasma and can be used to predict GRN mutation status. This study also showed a wide range in plasma GRN levels in non-GRN mutation carriers, including controls. We have now performed a genome-wide association study of 313,504 single-nucleotide polymorphisms (SNPs) in 533 control samples and identified on chromosome 1p13.3 two SNPs with genome-wide significant association with plasma GRN levels (top SNP rs646776; p = 1.7 × 10−30). The association of rs646776 with plasma GRN levels was replicated in two independent series of 508 controls (p = 1.9 × 10−19) and 197 FTLD patients (p = 6.4 × 10−12). Overall, each copy of the minor C allele decreased GRN levels by ∼15%. SNP rs646776 is located near sortilin (SORT1), and the minor C allele of rs646776 was previously associated with increased SORT1 mRNA levels. Supporting these findings, overexpression of SORT1 in cultured HeLa cells dramatically reduced GRN levels in the conditioned media, whereas knockdown of SORT1 increased extracellular GRN levels. In summary, we identified significant association of a locus on chromosome 1p13.3 with plasma GRN levels through an unbiased genome-wide screening approach and implicated SORT1 as an important regulator of GRN levels. This finding opens avenues for future research into GRN biology and the pathophysiology of neurodegenerative diseases
    corecore