110 research outputs found

    Modular Biometric Monitoring System

    Get PDF
    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to control communication of data, via the bus, with each of the plurality of data acquisition modules

    Data Acquisition for Modular Biometric Monitoring System

    Get PDF
    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules

    Transfer Function Control for Biometric Monitoring System

    Get PDF
    A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data

    Phase II study of docetaxel in combination with epirubicin and protracted venous infusion 5-fluorouracil (ETF) in patients with recurrent or metastatic breast cancer. A Yorkshire breast cancer research group study

    Get PDF
    This study was originally designed as a phase I/II study, with a dose escalation of docetaxel in combination with epirubicin 50 mg m⁻² and 5-fluorouracil (5-FU) 200 mg m⁻² day⁻¹. However, as dose escalation was not possible, the study is reported as a phase II study of the combination to assess response and toxicity. A total of 51 patients with locally advanced or metastatic breast cancer were treated on this phase II study, with doses of docetaxel 50 mg m⁻², epirubicin 50 mg m⁻² and infusional 5-FU 200 mg m⁻² day⁻¹ for 21 days. The main toxicity of this combination was neutropenia with 89% of patients having grade 3 and 4 neutropenia, and 39% of patients experiencing febrile neutropenia. Nonhaematological toxicity was mild. The overall response rate in the assessable patients was 64%, with median progression-free survival of 38 weeks, and median survival of 70 weeks. The ETF regimen was found to be toxic, and it was not possible to escalate the dose of docetaxel above the first dose level. This regimen has therefore not been taken any further, but as a development of this a new study is ongoing, combining 3-weekly epirubicin, weekly docetaxel and capecitabine, days 1-14

    Effect of Loading Configuration on Kinematics and Kinetics for Deadlift and Squat Exercises: Case Study in Modeling Exercise Countermeasure Device for Astronauts

    Get PDF
    This study compares squat and deadlift exercises performed with two different loading configurations: 1) on a novel single-cable resistance exercise countermeasure device (ECD) for spaceflight and 2) with free weights. The results compare joint kinematics and kinetics between different loading configurations for each exercise, and also between the two exercises for each loading configuration. Single-cable versions of the squat (using a harness) and deadlift (using a T-bar) performed on the Hybrid Ultimate Lifting Kit (HULK) ECD have significantly different sagittal plane joint angle kinematics (both peak angle and range of motion) as well as joint kinetics (both peak joint moment and joint impulse) vs. their free weight equivalents at the same load. Differences also exist in hip abduction and rotation. Overall, the single-cable configurations tend to reduce peak joint angles, ranges of motion, peak joint moment and joint impulse vs. free weights. A notable exception is the lumbar joint, which is more heavily loaded for single-cable squats vs. free weight squats. This may have implications for both training benefit and possible risk of injury. Deadlift and squat exercises work the lower body musculature in different ways, with the deadlift emphasizing hip and lumbar extension and the squat emphasizing knee extension. Based on these findings, we would advocate the use of both movements in the exercise prescriptions of astronaut crews on deep-space missions

    Miniature Exercise Device-2 (MED-2): Preliminary ISS Evaluation Results for a Compact Motorized Resistive and Aerobic Rowing Exercise Device

    Get PDF
    Future human missions beyond Low Earth Orbit (LEO) will require onboard equipment to provide exercise capabilities for the crew to counter the adverse physiological effects of long-duration microgravity. To accomplish this within the physical constraints of a space vehicle or transit module, a single miniature device that provides both resistive and aerobic exercise modalities is required. To meet this need, Johnson Space Centers (JSC) Software, Robotics, and Simulation Division (ER) developed the Miniature Exercise Device-2 (MED-2). MED-2 integrates a torque-controlled servomotor and a series-elastic actuator to provide highly-controllable load profiles and a large magnitude output performance in a very small package. This innovative technology is derived from years of JSC/ER design, development and operational experience with cutting-edge robotics, motor controllers, software and actuator/sensor miniaturization, including Robonaut 2 and MED-1. MED-2 was presented at the 2016 ISS R&D Conference. This is an update now that the last of six crewmembers will have completed planned MED-2 sessions on the International Space Station (ISS) in May 2018.Current state-of-the-art ISS exercise equipment consists of two treadmills, a resistive exercise device and two cycle ergometers with a total mass of several thousand pounds and a total volume of several cubic yards. This equipment has proven vital to mitigate the musculoskeletal and cardiovascular degradation effects of microgravity. However, due to the large operational volume and mass of these ISS devices, tailoring them for smaller vehicles, such as Orion, is not possible. In addition, each of the current ISS devices targets a single specific modality. Compared to the existing spaceflight (and even terrestrial) exercise equipment, MED-2 is a new archetype altogether. The combined features of compact size, multi-modality and high-performance is attributable to its innovative series elastic actuator and motor controller. Following its arrival on ISS in 2016, MED-2 was evaluated in two parts. The first and shorter evaluation was an engineering functional checkout of the hardware. As this was a novel exercise device previously never used on ISS, the initial checkout assessed the operation of the hardware and ensured the motion and dynamic range of the crew did not present any collision or other hazards. The second portion of the study collected the heart rates, kinematics and utilized operational volumes of six astronauts to determine the quality of both the resistive and aerobic exercise modalities as delivered by MED-2. Investigators from JSC Biomedical Research and Environmental Science Division (SK) and Glenn Research Center are currently evaluating the data and preparing preliminary results. For the resistive exercise modality, MED-2 demonstrated a range of constant resistive loads from 10-150 lbf. With a displacement range of 84 inches, the MED-2 accommodates users from 5th percentile Japanese female through 95th percentile American male for all of its certified exercises. The displacement measurement accuracy has also been verified within 2.5 percent full range. The crew was able to successfully perform all prescribed resistive exercises, except Goblet Squats which were not feasible with a constant load profile. For the aerobic exercise modality, MED-2 simulated a rowing motion with prescribed and user-selected resistance levels. It has demonstrated rates up to 60 strokes per minute on the ground. MED-2 loads and displacements performance are the same as those cited for the resistive modality. Although each of the crew was able to perform the prescribed aerobic rowing sets, there was considerable variability in the rowing motion among different crewmembers. Also, as expected, the crew was unable to get the full benefits of a typical terrestrial rowing stroke because the current configuration does not allow the user to reach past their feet. These observations have already informed the requirements for other microgravity rowing devices currently in development. One of the unique features of the MED-2 device is the intuitive touch-screen control system. This One Portal graphical user interface (GUI) was developed based on JSC/ERs heritage knowledge and experience of developing and sustaining the current ISS exercise equipment. Through this interface, the crew easily performed prepared prescriptions as well as had the ability to adjust exercise modality, load and other exercise details such as number of repetitions and number of sets. This touch-screen and GUI fulfilled the MED-2 project goal to simplify the interaction between the user and the device. Furthermore, the extent to which MED-2 utilizes a touchscreen and GUI to control exercise equipment is unmatched among the existing ISS exercise devices. As a motorized device, MED-2 technology can provide a customizable force profile that can be varied as a function of strap displacement, strap velocity or a combination of these and other variables. During 2017, JSC/ER developed and flight-certified a resistive exercise algorithm that mimics the 1-G inertial effects of free-weights and enables adjustable eccentric-to-concentric loading ratios. Subsequent development will explore varying the load profiles and incorporating additional exercises beyond the current list of certified movements

    Estimation of Lower-Body Kinetics from Loading Profile and Kinematics Alone, Without Measured Ground Reaction Forces

    Get PDF
    Biomechanical models of human motion can estimate kinetic outcomes, such as joint moments, joint forces and muscle forces. Typically, one performs an inverse dynamics (ID) analysis to compute joint moments from joint angles and measured external forces. Sometimes it is impractical to measure ground reaction forces and moments (GRF&M). We devised an empirical method for performing ID analysis of resistance exercises without measured GRF&M. The method solves the multibody dynamics equations of motion with four key assumptions about the GRF&M that reduce the number of unknowns. The assumptions are 1) negligible ground reaction moments, 2) fixed lateral/medial location of the center of pressure (COP), 3) equal fore/aft location of the COP between the feet, and 4) constant angle of the GRF vector relative to the vertical axis in the frontal plane. We used evaluation trials from a spaceflight countermeasure resistance training device to test this approach. Four participants performed squat and deadlift exercises at various loads. We compared results from traditional ID analysis to results without measured GRF&M using our method. We found that joint moment trajectories in the sagittal plane were qualitatively similar in shape between the two methods, and the amount of root mean squared error (RMSE), measured by difference in joint moment impulse, was typically under 10 percent. Non-sagittal joint moment trajectories, which are much lower in overall magnitude, were not qualitatively similar in shape between the two methods. Non-sagittal moments displayed much higher RMSE, with typical values well over 50 percent. These findings were further supported by validation metrics (Sprague and Geers' P and M metrics, Pearson's r correlation coefficient). Based on these findings, we concluded that useful kinetic results are obtained from ID analysis of squat and deadlift exercises, even when GRF&M are not measured, as long as the outcomes of interest lie in the sagittal plane

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    FLIP: A Targetable Mediator of Resistance to Radiation in Non-Small Cell Lung Cancer

    Get PDF
    Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IRinduced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR
    corecore