151 research outputs found

    ECG Response of Koalas to Tourists Proximity: A Preliminary Study

    Get PDF
    Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists

    Protein Hydrolysates Are Avoided by Herbivores but Not by Omnivores in Two-Choice Preference Tests

    Get PDF
    Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management

    Higher risk of gastrointestinal parasite infection at lower elevation suggests possible constraints in the distributional niche of Alpine marmots

    Get PDF
    Alpine marmots Marmota marmota occupy a narrow altitudinal niche within high elevation alpine environments. For animals living at such high elevations where resources are limited, parasitism represents a potential major cost in life history. Using occupancy models, we tested if marmots living at higher elevation have a reduced risk of being infected with gastrointestinal helminths, possibly compensating the lower availability of resources (shorter feeding season, longer snow cover and lower temperature) than marmots inhabiting lower elevations. Detection probability of eggs and oncospheres of two gastro-intestinal helminthic parasites, Ascaris laevis and Ctenotaenia marmotae, sampled in marmot feces, was used as a proxy of parasite abundance. As predicted, the models showed a negative relationship between elevation and parasite detectability (i.e. abundance) for both species, while there appeared to be a negative effect of solar radiance only for C. marmotae. Site-occupancy models are used here for the first time to model the constrains of gastrointestinal parasitism on a wild species and the relationship existing between endoparasites and environmental factors in a population of free-living animals. The results of this study suggest the future use of site-occupancy models as a viable tool to account for parasite imperfect detection in ecoparasitological studies, and give useful insights to further investigate the hypothesis of the contribution of parasite infection in constraining the altitudinal niche of Alpine marmots

    Dietary Profile of Rhinopithecus bieti and Its Socioecological Implications

    Get PDF
    To enhance our understanding of dietary adaptations and socioecological correlates in colobines, we conducted a 20-mo study of a wild group of Rhinopithecus bieti (Yunnan snub-nosed monkeys) in the montane Samage Forest. This forest supports a patchwork of evergreen broadleaved, evergreen coniferous, and mixed deciduous broadleaved/coniferous forest assemblages with a total of 80 tree species in 23 families. The most common plant families by basal area are the predominantly evergreen Pinaceae and Fagaceae, comprising 69% of the total tree biomass. Previous work has shown that lichens formed a consistent component in the monkeys’ diet year-round (67%), seasonally complemented with fruits and young leaves. Our study showed that although the majority of the diet was provided by 6 plant genera (Acanthopanax, Sorbus, Acer, Fargesia, Pterocarya, and Cornus), the monkeys fed on 94 plant species and on 150 specific food items. The subjects expressed high selectivity for uncommon angiosperm tree species. The average number of plant species used per month was 16. Dietary diversity varied seasonally, being lowest during the winter and rising dramatically in the spring. The monkeys consumed bamboo shoots in the summer and bamboo leaves throughout the year. The monkeys also foraged on terrestrial herbs and mushrooms, dug up tubers, and consumed the flesh of a mammal (flying squirrel). We also provide a preliminary evaluation of feeding competition in Rhinopithecus bieti and find that the high selectivity for uncommon seasonal plant food items distributed in clumped patches might create the potential for food competition. The finding is corroborated by observations that the subjects occasionally depleted leafy food patches and stayed at a greater distance from neighboring conspecifics while feeding than while resting. Key findings of this work are that Yunnan snub-nosed monkeys have a much more species-rich plant diet than was previously believed and are probably subject to moderate feeding competition

    Expanding frontiers in materials chemistry and physics with multiple anions

    Get PDF
    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials

    Pyruvate: immunonutritional effects on neutrophil intracellular amino or alpha-keto acid profiles and reactive oxygen species production

    Get PDF
    For the first time the immunonutritional role of pyruvate on neutrophils (PMN), free α-keto and amino acid profiles, important reactive oxygen species (ROS) produced [superoxide anion (O2−), hydrogen peroxide (H2O2)] as well as released myeloperoxidase (MPO) acitivity has been investigated. Exogenous pyruvate significantly increased PMN pyruvate, α-ketoglutarate, asparagine, glutamine, aspartate, glutamate, arginine, citrulline, alanine, glycine and serine in a dose as well as duration of exposure dependent manner. Moreover, increases in O2− formation, H2O2-generation and MPO acitivity in parallel with intracellular pyruvate changes have also been detected. Regarding the interesting findings presented here we believe, that pyruvate fulfils considerably the criteria for a potent immunonutritional molecule in the regulation of the PMN dynamic α-keto and amino acid pools. Moreover it also plays an important role in parallel modulation of the granulocyte-dependent innate immune regulation. Although further research is necessary to clarify pyruvate’s sole therapeutical role in critically ill patients’ immunonutrition, the first scientific successes seem to be very promising

    A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea

    Get PDF
    Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands

    Seasonal variations of the digestive tract of the Eurasian beaver castor fiber.

    Get PDF
    Forage availability for wild rodents varies with season. In turn, the composition of food can affect morphometric parameters of the digestive tract. This study was performed in Eurasian beavers (Castor fiber) whose population was close to extinction in most Eurasian countries, but has now increased. Due to the previous low number of studies, information about the effect of forage availability on the digestive tract morphology has previously been lacking. This study was performed using beavers captured from the natural environment during three seasons of different forage availability: winter, summer and autumn. It was found that the diet of the beaver varied during the year; in winter it was dominated by woody material consisting of willow shoots, whereas in summer the diet was primarily herbs, grass and leaves. Season also affected the mass of digested contents of the digestive tract. The digestive content increased in the caecum and colon in winter and autumn, when poor-quality food dominated the beaver's diet. The results indicated that the digestive tract parameters of beavers varied based on the composition of available forage
    corecore