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Abstract 

Over many years, inorganic compounds such as oxides have been a major branch of 

materials science, establishing a profound knowledge in synthesis, characterization and 

functions. As we enter the 21st century, however, compounds with multiple anions such 

as oxyhalides and oxyhydrides have begun to serve as a new class of materials with 

diverse possibilities, covering a wide spectrum of research areas. Here we review recent 

progress, current status, and future prospects and challenges in the research involving 

mixed anion (mostly oxide-based) compounds. In particular, we focus on crucial roles of 

multiple anions in synthesis, characterization, and chemical and physical properties. New 

directions toward material development are presented with advances in synthetic 

approaches for the design of both local and overall structure, state-of-the-art 

characterization techniques that can unveil unique structural and chemical states, and 

chemical physical properties emerging from the synergy of multiple anions including 

catalysis, energy conversion, and electronic materials.  

 

Introduction 

The continuing growth of many modern technologies is driven by the development 

of functional solid state materials such as metal oxides, fluorides and nitrides that adopt 

a range of structural types and compositions. The accumulation of knowledge based on 

experimental data (or at times “chemical intuition”) and computational modeling and 

validations has led to extensive knowledge of these ‘single-anion’ materials and affords 

further prediction of properties. Most of these results derive from variations in metal 
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cation chemistry, as opposed to the anion, when examining structure-property 

relationships. 

A multiple or mixed anion compound is a solid-state material containing more than 

one anionic species in a single phase, such as oxyfluorides (oxide-fluoride) and 

oxynitrides (oxide-nitride). Unlike oxides, which exhibit diverse chemistries and 

structures often known from mineralogy, the structures of most mixed-anion compounds, 

among other aspects, are less explored with much to learn. This is readily seen when 

looking at the local structure of these compounds where the metal cation is bonded to 

more than one anionic ligand to form a heteroleptic polyhedron (Box 1). The different 

anionic characteristics such as charge, ionic radii, electronegativity and polarizability 

(Table 1) add new dimensions to control and tune the electronic and atomic structure of 

materials, which may support phenomena inaccessible to a single-anion analog. 

Such anion-centered chemistry and physics is still in its infancy; there is much 

unexplored space, making it perhaps the most untapped field of materials sciences and 

giving new challenges and opportunities. In this review, we aim to describe the current 

status and scope as well as outline future prospects and challenges surrounding mixed-

anion (mostly oxide-based) compounds, in particular, focusing on crucial roles of 

multiple anions in synthesis, characterization, and chemical and physical properties. Note 

that we had to be selective in materials and references because of the limited space. We 

provided mainly reviews or selected references which could be an entry point to the 

literature search for readers who need additional information. 
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Mixed-anion directed strategies 

Understanding of mixed-anion compounds is still growing, but recent studies have 

unveiled several key features that are otherwise inaccessible in traditional single-anion 

compounds, as summarized in Figure 1. Replacing oxide ligands in coordination 

octahedra or tetrahedra with other anions can differentiate the binding energy (Figure 1e), 

which may benefit chemical reaction and anionic diffusion (Figure 1f). It might also cause 

a (local) symmetry-breaking (Figure 1d) or create a cis/trans degree of freedom (Figure 

1c). The latter is a familiar ingredient in coordination chemistry, but less so in solid-state 

chemistry. Additionally, the crystal field splitting (CFS) can be tuned to the extent that is 

only allowed in coordination complexes, while retaining the original polyhedral shape 

and connectivity (Figure 1a). An extensive modification of band (electronic) structures is 

also noteworthy, leading to a reduced dimensionality (Figure 1g) and an upward shift of 

valence band maximum (VBM) (Figure 1b). 

Oxyhydrides (oxide-hydrides), containing oxide and negatively charged hydride (H–) 

anions, are rare but can be remarkable materials. Several features specific to hydride are 

given in Figure 2. Hydrogen is the simplest (and lightest) element with one electron and 

one proton, giving the hydride anion distinct characteristics that differentiate it from other 

anions. For example, its bipolar nature and moderate electronegativity allow covalent, 

metallic, and ionic bonding, depending on the electronegativity of the element with which 

hydrogen bonds. This is schematically represented by the unconventional periodic table 

of elements (Figure 2b),1 where values of electronegativity, ionization potential, and 
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electron affinity are shown in the upper left, lower left and lower right corner of each box. 

Related to this, the extraordinary flexibility in size of hydride (Figure 2a) and possible 

reactions involving the zwitterionic nature (Figure 2d) may bring about unprecedented 

functions. The flexible nature of hydride is also evident in its polarizability, as the 

refractive index of LiH (1.985) is significantly larger than that of LiF (1.392) despite the 

fewer number of electrons. Last, H– is the only anion which does not possess p orbitals 

in the valence shell. The lack of p orbitals in the outermost shell (Figure 2c) makes a 

significant distinction in both the nature of the chemical bonding and the magnetic 

interaction with other anions. 

 

 

Synthesis beyond heat and beat 

Conventional inorganic materials are mostly oxides, due to the fact that the Earth’s 

atmosphere contains mainly reactive oxygen (and inert nitrogen). Thus, metal oxides are 

conventionally synthesized by high temperature solid-state reactions, sometime called 

‘heat & beat’ (or ‘shake & bake’) processing. A major difficulty in preparing mixed-anion 

compounds in the same way lies in the differing volatilities of precursors (oxides, 

chlorides, hydrides etc.), so simple heating of mixed starting reagents often ends up with 

single-anion compounds, though some can be prepared in air (e.g., LaCl3 + 0.5O2 

LaOCl + Cl2). For this reason, the preparation of mixed anion compounds often requires 

controlled atmospheres such as in vacuum or under various flowing gases (Cl2, F2, NH3, 

CS2, etc…) (Figure 3a) or exploits alternative synthesis methods, including soft-



 6 

chemistry (Figure 3b), solvothermal synthesis, or thin-film growth techniques (Figure 3c) 

and high pressure synthesis (Figure 3d). 

For example, a high temperature ammonolysis reaction (under NH3 flow) is 

employed,2 instead of inert N2, to obtain many oxynitride semiconductors, including 

AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) with a high dielectric constant due to the larger 

polarizability of nitrogen (Figure 1e).3 However, the ammonolysis reaction involves the 

dissociation of NH3 to N2 and H2 (Figure 3a) and thus provides highly reducing 

atmosphere, which gives a certain constraint on available metals. To increase the 

reactivity of ammonia, a microwave oven is used to generate an ammonia plasma.2 

The high reactivity of the anionic species, often gaseous in elemental form, can 

conversely be an advantage in tailoring anions in extended solids at low temperature. 

Topochemical insertion and exchange reactions (Figure 3b), which provide metastable 

mixed-anion phases from precursors (typically oxides) in a rational, chemically designed 

manner, have been developed over the last two decades.4 A proper choice of reagents and 

host structures is essential in directing reactions in a desired way. Consider for example 

oxyfluorides: A F2 treatment can give an oxidative fluorination involving F-intercalation 

(e.g. LaSrMn3+O4 LaSrMn5+O4F2), while poly(tetrafluoroethylene), known as Telfon, 

acts as a reductant and may lead to reductive fluorination involving O/F-exchange (e.g. 

RbLaNb5+
2O7 RbLaNb4.5+

2O6F).5,6 

The hydride anion is strongly reductive in nature, with a large standard redox 

potential of –2.2 V (H–/H2 vs. SHE), so a transition metal oxyhydride appears impossible 

to stabilize. However, topochemical reaction using metal hydrides such as CaH2 has 
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opened a new avenue, yielding the first example as LaSrCoO3H0.7 (Co1.7+, d7.3) in 2002.7 

Density functional theory (DFT) calculations revealed the presence of fairly strong  

bonding between Co eg and H 1s orbitals.8 On the other hand, the formation of 

BaTiO2.4H0.6 (Ti3.4+; d0.6), SrVO2H (V3+; d2) and SrCrO2H (Cr3+; d3) is not readily 

rationalized since Ti/V/Cr t2g and H 1s orbitals are orthogonal (Figure 2c).9,10,11 Since 

all the known transition-metal oxyhydrides exist with alkali and alkaline earth elements,12 

inclusion of any highly electropositive cation appears to be needed to make hydrogen 

with its moderate electronegativity (Figure 2b) become negatively charged. This may 

explain why TiO2 does not incorporate hydride. 

The observation of H/D exchange in BaTiO2.4H0.6 when heated in deuterium gas at 

~400 °C indicates the labile nature of H– (Figure 1f).10 The lability of hydride in 

BaTiO2.4H0.6 (and other oxyhydrides) enables further topochemical anion exchange 

reactions (Figure 3b).11,13,14 When BaTiO2.4H0.6 is used as a precursor, the ammonolysis 

reaction temperature (> 1000 °C) is remarkably lowered to 350 °C, yielding 

BaTiO2.4N0.4.13 Even N2 flow at 400 °C gave the same product, demonstrating the ability 

of H– to activate the nitrogen molecule. This hydride exchange chemistry is general, 

yielding other mixed-anion compounds such as oxide-hydride-hydroxide 

BaTiO2.5H0.25(OH)0.25.14 

Solvothermal synthesis is a synthetic method in which reactions occur in solution (i.e. 

water in the case of hydrothermal synthesis) inside a sealed vessel at temperatures near 

the boiling point of the solvent and pressures greater than atmospheric pressure.15 

Liquid-phase transport of the reactants allows for rapid nucleation and subsequent growth 



 8 

of a crystalline product with controlled morphology. This method produces crystals at 

lower temperatures and on shorter timescales than typical solid-state reactions. It also 

increases the likelihood of formation of mixed-anion compounds (e.g., halide-hydroxides, 

oxyhalides), which are often unfavored at higher temperatures. Solvothermal syntheses 

have been very successful in producing materials with acentric coordination 

environments that lead to noncentrosymmetric (NCS) structures having desirable 

properties such as piezoelectricity, pyroelectricity, and nonlinear optical activity.16 

Direct fluorination of oxides with F2(g) or HF(g) is quite effective with minimal risk 

of side products.  The handling of caustic, reactive gases, however, requires particularly 

specialized gas-phase reactors. In contrast, hydrothermal synthesis in hydrofluoric acid, 

or solutions of alkali fluorides, may be the easiest and safest route. The Teflon pouch 

approach is an efficient process to allow for fast development of discovery–based 

syntheses of new materials because various reactions can be performed in separate, small 

Teflon reaction pouches under identical, autogeneous conditions in an autoclave (Figure 

3c). Up to six reactions can be run in a 125 mL vessel. 

Crystallographic long range ordering of oxide and fluoride anions has historically 

been a challenge, but materials based on anionic coordination polyhedra [MOxF6–x]
n– (x = 

1, n = 2 for M = V5+, Nb5+, Ta5+; x = 2, n = 2 with M = Mo6+, W6+; and x = 3, n = 3 for M 

= Mo6+) have been solvothermally prepared without apparent anion-site disorder (Figure 

3c).16 In the A-site ordered perovskite KNaNbOF5 and CsNaNbOF5, the interactions of 

the [NbOF5]
2– anion with the combination of Na/K or Na/Cs differ significantly. The NCS 

structure (KNaNbOF5) maintains a larger primary electronic distortion of the [NbOF5]
2– 
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anion along with a low coordination number of the K+ ion, consistent with the largest 

bond strain index. In contrast, the Cs+ ions of the centrosymmetric structure 

(CsNaNbOF5) can exhibit higher coordination numbers and the [NbOF5]
2– anion exhibits 

a greatly reduced primary distortion. Theoretically, the group-theoretical method was 

applied to investigate anion ordering in the cubic perovskite, establishing 261 ordered 

low symmetry structures, each with a unique space-group symmetry.17 These idealized 

structures are considered as aristotypes with different derivatives formed by tilting of BO6 

octahedra, providing a guide for designing NCS properties. 

Thin film growth of oxides using pulsed laser deposition (PLD) or molecular beam 

epitaxy (MBE) is another useful bottom-up approach to construct desired artificial lattices, 

which has significantly contributed to the progress of condensed matter physics in the last 

two decades.18 More rarely, thin film growth has been shown to be a promising method 

to prepare mixed anion compounds, avoiding potential problems in anion diffusion. 

Oxynitrides films are fabricated by nitrogen plasma-assisted PLD, while polyvinylidene 

fluoride (PDVF) is used to topochemically convert oxide films to oxyfluoride ones. TaON 

films grown on a (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 substrate adopt a metastable anatase 

structure with anion vacancies, leading to high-mobility electron transfer.19 Tensile and 

compressive stresses from the substrate enables tailoring of the anion arrangement of a 

given structure. Compressively strained SrTaO2N films show a partial cis-to-trans 

conversion of TaO4N2 octahedra (Figure 3c).20 An anion order/disorder transition can 

also be induced by strain engineering.21 However, we note that there are still very few 
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reports on mixed-anion films and most are thin film studies targeting optical (or surface) 

coating applications. 

High pressure- and high temperature conditions are typically used to stabilize dense 

materials through solid-state reactions or structural transformations. High pressure 

reactions in sealed vessels prevent loss of volatile elements and so are particularly useful 

for anions such as nitride to prevent loss of gaseous nitrogen (Figure 3d). Autoclaves can 

be used for reactions under nitrogen up to kbar pressures, but many syntheses of 

oxynitrides have used direct reactions between solid oxides and nitrides (or oxynitrides) 

in multi-anvil presses where pressures can be extended to 10’s of kbar (GPa) values. The 

spinel Ga3O3N22 and RZrO2N perovskites (R = Pr, Nd and Sm)23 were synthesized by 

direct solid-state reaction between oxides and nitrides or oxynitrides under GPa pressures. 

The use of solid reagents (instead of NH3) offers an access to oxynitrides with middle-to-

late transitions metals. A polar LiNbO3-type structure MnTaO2N with a helical spin order 

was recently synthesized at 6 GPa and 1400 °C.24 A non-polar analogue ZnTaO2N was 

also prepared.25 New light atom materials have also been reported such as the sphalerite-

related boron oxynitride B6N4O3 synthesized from direct reaction between B2O3 and 

hexagonal-BN at 15 GPa and temperatures above 1900 °C.26 Pressurization of 

baddeleyite structuredTaON drives a transition to a cotunnite-type structure with a very 

high bulk modulus of 370 GPa (Figure 3d).27 

 

Chemical and structural analyses 
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Single crystal or powder diffraction methods are used to characterise many 

crystalline substances. A particular challenge for mixed-anion materials is to determine 

the distribution and degree of order-disorder of two or more anions. This complexity 

presents a challenge for both experiment and materials simulation (Figure 3e), where 

equilibrium structures consisting of ordered or disordered anion configurations may be 

used for electronic structure calculations, e.g., those based on DFT or many-body 

methods. Ultimately to assess the properties of a mixed-anion material, the structure must 

be known. To that end, a number of structure-search and algorithms, including cluster 

expansions,28 special quasirandom structures,29 and genetic algorithms,30 frequently 

applied to multicomponent alloys and single anion compounds could be used to assess 

phase stability and solve structures in multi-anion compounds. In combination with 

experimental methods (below), a more complete description of the local and crystal 

structure can be obtained. These methods are also important for obtaining interaction 

energies for effective model Hamiltonians to describe ordering and ferroic transitions.31 

Experimentally, the anion distribution may be studied directly using the scattering 

contrast between the anionic elements or indirectly through the different sizes or 

coordination environments of the anions in the structure. Direct X-ray scattering contrast 

is poor between elements from the same row of the periodic table such as N/O/F or 

As/Se/Br, and neutron scattering may be useful in some cases, for example, to 

differentiate N and O which have respective neutron scattering lengths of 9.36 and 5.83 

fm (Table 1) in oxynitrides.Error! Reference source not found. Neutron scattering also enables the 
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positions of these light atoms to be determined more precisely in the presence of heavy 

metal atoms than is usually possible from X-ray refinements. 

Anions that have very similar X-ray and neutron scattering factors such as oxide and 

fluoride may be distinguished by their structural environments if well-ordered within a 

crystal structure. Differences in formal charge and size are captured by the popular Bond 

Valence Sum (BVS) method,32 but even a simple approach based on apportioning ideal 

bond valences from Pauling’s second crystal rule was found to account for anion orders 

in many oxyhalides and oxynitrides (Figure 4a).33 Increasing the formal anion charge 

tends to promote more covalent bonding to the metal cations and this can also enable 

anions to be distinguished; for example, vanadium forms very short ‘vanadyl’ bonds to 

oxide but not fluoride in V4+ and V5+ oxyfluorides. 

Between the limits of fully ordered and randomly disordered anions, there are many 

cases of intermediate anion orders with local clustering or extended correlations that may 

give rise to non-random site occupancies in the averaged crystal structure. A particularly 

widespread example of such correlated disorder is found in AMO2N and AMON2 

perovskite oxynitrides where layers of zig-zag MN chains (Figure 4c) result from strong 

covalent interactions between high valence transition metals M and nitride anions that 

promote local cis-MN2 (or MO4N2) configurations (Figure 1c, e). This order has been 

deduced from powder neutron refinements of O/N site occupancies in materials such as 

SrMO2N (M = Nb, Ta),34 LaTaON2,
35 and RVO2N (R = Pr, Nd)36,37 perovskites. Local 

O/N correlations are also present in silicon oxynitrides where covalency tends to equalize 
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the SiO4–nNn compositions of all nitridosilicate tetrahedra, for example, in melilite-type 

Y2Si3O3N4.
36 

Analysis of total X-ray or neutron scattering data, including diffuse features from 

short-range correlations as well as the Bragg scattering, has been used to construct the 

pair distribution function (PDF) of interatomic distances in many materials. Fitting of the 

PDF can be a powerful tool for revealing short range structural correlations in crystalline 

materials, as well as in amorphous substances.38 Scattering or size contrast between 

anions can be used to determine their local order, for example, neutron PDF analysis 

revealed the prevalence of local cis-TaN2 configurations in the perovskite BaTaO2N 

(Figure 4c).39 

Complementary information for analyzing the neutron- or X-ray-PDFs can be 

acquired by other techniques such as electron energy loss spectroscopy (EELS) combined 

with scanning transmission electron microscopy (STEM), X-ray absorption near edge 

structure (XANES) of X-ray absorption spectroscopy (Figure 4c), and magic angle-

spinning (MAS) nuclear magnetic resonance (NMR) (Figure 4b), which provide not only 

anion composition but also the local structures. As opposed to the above diffraction 

methods that may have difficulty in distinguishing among O, F and N, state-of-the-art 

STEM-EELS can determine atomic occupancy with a resolution of each atomic column 

in a crystal lattice. This is particularly advantageous for thin film samples, in which 

crystal orientation is well controlled but precise structural analysis by diffraction methods 

is not applicable. XANES is also effective for identifying the above elements and 

determining their chemical states. Perovskite (Ca1–xSrx)TaO2N epitaxial films with 
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controlled strains were analyzed using XANES with a polarized light source.40 From the 

intensity of π-bonded states of O or N with Ta-5d via excitation from O and N core levels, 

it was concluded that N preferably takes the trans configuration in the TaO4N2 octahedron 

for compressive strain states, which was also supported by STEM-EELS and DFT 

calculations (Figure 4c). 

NMR has also been effective for (local) structural determination of mixed-anion 

compounds.41 Structural determination of industrially-important Si-Al-O-N materials 

(SiAlON), which are solid solutions between Si3N4 and Al2O3, by X-ray diffractometry 

is insufficient because X-ray scattering factors within the Si–Al and O–N pairs are 

similar; however, the high-resolution MAS-NMR method overcomes this challenge. 

Local coordination around the 29Si and 27Al nuclei was determined by MAS-NMR and 

their integration gives a full structural model for such oxynitride materials42 and, coupled 

with ab initio calculations, preferential Al–O clustering.43 

High sensitivity is a hallmark of 1H-NMR, enabling detection of H– with a 

concentration as low as 0.1% of the total anions. Although H is amphoteric, coexistence 

of H+ (or OH–) and H– ions in a single material is not trivial because their thermodynamic 

stability is different and depends on oxygen partial pressure, P(O2). Recent 1H-NMR has 

identified a ‘hidden’ hydride anion and its local environment in hydroxyl-oxides like 

apatite Ca10(PO4)6(OH)2.
44 Here, the size flexibility of H– (Figure 2a) substantially 

changes the electron density (and relevant magnetic field shielding) at 1H nuclei and 

hence the isotropic chemical shift of 1H-NMR (Figure 4b). 
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Cage structures can incorporate various anionic species. Mayenite 12CaO·7Al2O3 

with a positively-charged cage structure is shown to host many mono- or divalent guest 

anions (F–, Cl–, S2–, O–, O2
–, O2

2–, C2
2–, NH2–, CN–, O2–, OH– and H–) (Figure 1h).45 Raman 

and electron paramagnetic spin resonance (EPR) measurements show that active oxygen 

species of O–, O2
– and O2

2–, less stable than O2– in oxide crystals and usually formed on 

surfaces transiently,46 can stably exist in the cage. In a lightly hydride-doped mayenite, 

an irradiation of UV light induces a chemical reaction in the cage: H– + O2–  2e– + OH– 

(Figure 2d). Here, the e– is confined within the cage, like F+ centers in alkali halides, and 

is responsible for a ‘permanent’ electrical conductivity as the reverse of the above 

reaction proceeds with a timescale of ten thousand years at room temperature.47 

Formation of transient atomic hydrogen during the photo-dissociation of H– is monitored 

by EPR, revealing that its lifetime of the atomic hydrogen is a few minutes at 40 K.48 

 

Chemical properties 

Optical applications 

Many oxides have a wide band gap and so are transparent. Valence band engineering 

according to Figure 1d is useful to make them responsive to visible light, the main 

component of solar spectrum. When the oxide anion is substituted by other anions with 

less electronegativity like nitride (Table 1), the non-oxide p orbitals having high potential 

energy extend the valence band and allow for visible-light absorption. Solid solutions of 

CaTaO2N and LaTaON2 perovskites have tuneable colours that range from yellow to red 

via orange (500–600 nm in wavelengths), depending on the composition of the solid 
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solutions.49 These oxynitrides are potential non-toxic alternatives to chalcogenide-based 

inorganic pigments. 

This strategy may be of particular importance for finding a photocatalyst which can 

split water to produce H2 and O2 under visible light. Otherwise, if oxides with a small 

band gap of < 3 eV (corresponding to > 400 nm) are used, the conduction band 

minimum (CBM, or flat-band potential) becomes more positive than the water reduction 

potential (0 V vs. NHE (normal hydrogen electrode) at pH 0), a limitation shown by 

Scaife in 1980 (Figure 5a).50 So far, various oxynitrides and oxysulfides (e.g. ZrO2-

grafted TaON) that overcome this limitation have shown water splitting 

performance.51,52,53 Some of them were found to be a useful component for Z-scheme 

type overall water splitting54 and CO2 reduction with the aid of a functional metal 

complex.55 

Unexpected changes in electronic structure are often found in a mixed-anion 

compounds, which presents a challenge to predictive materials theory. Methods based on 

DFT require appropriate exchange-correlation functions56,57 to accurately describe the 

mixed bonding character presented in these materials. Alloying wide-gap semiconductors, 

GaN and ZnO, results in an unprecedented yellowish powder (Figure 5a), and this 

provides the first reproducible example of visible-light-driven overall water splitting.58 

Loaded with nanoparticulate Rh2O3–Cr2O3 that works as an active site for H2 evolution, 

(Ga1–xZnx)(N1–xOx) exhibited H2 and O2 evolution for more than three months.49,59 One of 

the drawbacks of mixed anion photocatalysts in general is their instability against photo-

induced holes. This is seen even in (Ga1–xZnx)(N1–xOx), where the photo-induced holes 
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oxidize the N3– anion, degrading its photocatalytic activity by self-decomposition.59 

Bi4NbO8Cl, a Sillen–Aurivillius layered perovskite, was recently shown to stably oxidize 

water without any surface modifications. The observed stability is attributed to highly 

dispersive O-2p orbitals (thus responsible for VBM instead of Cl-3p).60 A recent study 

on a series of layered bismuth oxyhalides has revealed that Madelung site potentials of 

anions capture essential features of the valence band structures of these materials, 

enabling a prediction and design of the valence band structures by manipulating the 

stacking sequence of layers (Figure 1g).61 

Oxynitrides doped with rare earth elements show photoluminescence. Here, 

substitution of O2– for N3– gives a greater CFS of 5d levels of rare earth elements such as 

Eu2+ (Figure 1a), extending the excitation and emission peaks to longer wavelengths. 

SiAlON, (Si3–xAlx)(N4–xOx):Eu2+, and related phosphors undergo photoexcitation by 

absorbing blue light, and emitting yellow light, and hence are used in phosphor-converted 

white-light emitting LED lamps (WLEDs).62 Other important SiAlON-related phosphors 

used in WLEDs are the MSi2O2N2:Eu2+ and M2Si5N8:Eu2+ families (M = Ca, Sr, Ba),63 

the latter can be oxide-doped with Al3+ providing charge compensation in 

M2Si5−xAlxN8−xOx:Eu2+ (x = 0–1).64 The high thermal and chemical stability arising from 

covalent M−N bonding (Figure 1e) leads to practical applications. Similar chemical 

tuning has been applied for oxyfluoride type solid solutions such as AII
3–xA

III
xMO4F family 

with A = Sr, Ca, Ba and M = Al, Ga (e.g., (Sr,Ba)2.975Ce0.025AlO4F).65,66 

Another interesting feature from the mixed anion system is pleochroism, recently 

found in Ca3ReO5Cl2 with the Re6+ ion in a 5d1 configuration (Figure 5b).67 The heavily 
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distorted octahedral coordination of Re6+ by one Cl– and five O2– anions along with the 

spatially extended 5d orbitals gives rise to unique CFS energy levels (Figure 1a), much 

greater than 3d orbitals owing to stronger electrostatic interactions exerted from the 

ligands. The uni-directional alignment of these octahedra along the c axis makes the d-d 

transitions highly anisotropic. As a result, this compound exhibits very different colors 

depending on the viewing direction, i.e., distinct pleochroism. 

 

Anion conductor 

Certain anions are mobile in solids. The merit of a mixed-anion material is that it 

allows for anion diffusion by one (more ionic, less highly charged) anion and structural 

stability by the other (more covalent, more highly charged) anion (Figure 1f). This 

concept can be directly assessed using electronic structure methods, where calculations 

of intrinsic defect levels and diffusion barriers68 can be correlated with changes in the 

anion lattice. A layered lanthanum oxychloride LaOCl is a Cl-ion conductor.69 While 

La2O3 and LaCl3 are both sensitive to moisture, a critical disadvantage for practical 

applications, LaOCl is water-insoluble and exhibits Cl conductivity. An aliovalent Ca–

for–La substitution generates vacancies at the chloride site and hence the Cl– conductivity 

is improved. 

H– anion conductors are expected to provide high-energy storage and conversion 

devices because H– has an appropriate ionic size for fast diffusion (Figure 2a), a low 

electronegativity (Figure 2b) and a high standard redox potential of H–/H2 (–2.3 V), close 

to that of Mg/Mg2+ (–2.4 V). A pure H– conduction in K2NiF4-type La2LiHO3 has recently 
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been demonstrated, using an all-solid-state TiH2/La2LiHO3/Ti cell (Figure 5c).70 The two-

dimensional (2D) H– diffusion is further facilitated by introducing H– vacancies, leading 

to the activation energy of 68.4 kJ mol–1 for La0.6Sr1.4LiH1.6O2.
 

 

Battery electrodes 

Mixed-anion chemistry of oxyfluorides offers a new handle to tune a redox potential 

of battery electrodes. Here, instead of ‘direct’ valence (anion) band control described in 

Figure 1b, anion substitution enables an ‘indirect’ manipulation of the cation band. The 

redox potential of the LiFeSO4F phase (tavorite) is higher than the LiFePO4 phase 

(olivine) by 750 mV.71 This primarily results from the weaker (more ionic) Fe–F bond as 

compared with Fe–O bond (Figure 1e), which stabilizes the anti-bonding band of Fe eg 

orbitals (Figure 5c). Furthermore, Ag2V2O6F2 (SVOF) is a battery material potentially 

used in cardiac defibrillators owing to a fast discharge rate and high current density.72 

The silver density in SVOF is greater than that of currently-used industry standard 

cathode material Ag2V4O11 (SVO)73 and thus the current density above 3 V for SVOF 

(148 mAh/g) is greater than that for SVO (100 mAh/g). The current density above 3 V is 

sufficient and the potential at which it is delivered (3.52 V) is 300 mV greater than SVO 

owing to the fluoride incorporation (Figure 1b). 

Multivalent batteries exhibit a number of potentially valuable advantages compared 

to current lithium technology. The first functional multivalent battery was constructed in 

2000, this prototype used a magnesium metal anode against a low-voltage Chevrel phase 

cathode.74 A significant barrier to the adoption of magnesium batteries is the lack of an 
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available high voltage cathode that can reversibly intercalate magnesium. Cathodes 

composed of layered molybdenum fluoro-bronze are found to reversibly intercalate 

magnesium.75 MoO2.8F0.2, combined with a Mg-based electrolyte, gave a reversible 

capacity of nearly 80 mAh/g, an order of magnitude higher than isostructural α-MoO3 

with a similar particle size (Figure 5c). First-principles calculations revealed that the 

incorporation of fluoride within the crystal lattice reduces nearby molybdenum ions, 

enhancing in-plane electronic conductivity.76 The associated increase in electronic 

screening reduces the activation barrier for Mg ion diffusion but yet does not significantly 

lower the voltage. 

 

Thermoelectric materials 

Thermoelectric materials enable direct conversion between thermal and electrical 

energy. Optimal materials with a high figure of merit ZT have a high Seebeck coefficient 

and electronic conductivity in combination with a low thermal conductivity. BiCuSeO 

with (Cu2Se2)
2− layers alternately stacked with (Bi2O2)

2+ layers (Figure 1g), is a 

promising thermoelectric material, where one layer is responsible for electric conduction, 

while another lowers thermal conductivity.77 

Nanostructuring which may be based on local segregation of anions is another 

effective means to reduce phonon thermal conductivity. The PbTe–PbS system exhibits 

phase separation (spinodal decomposition), owing to a large difference in the anion sizes 

(Hume-Rothery rule).78 The resultant PbTe-rich and PbS-rich regions form dissimilar 

nanostructures with interphase boundaries that act as effective scattering centers for short-
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wavelength phonons (Figure 5d). A nominal composition of PbTe0.7S0.3 doped with 2.5% 

K achieved a figure-of-merit ZT of > 2 over a wide temperature range from 400 to 

650 °C.79 On the contrary, a complete solid solution is formed in the PbTe–PbSe system. 

By tuning the anionic composition in Pb(Te1–xSex), the electronic band structure exhibits 

high valley degeneracy (Figure 5d), leading to an optimized ZT value of 1.8 at 577 °C.80 

 

Physical properties 

Ordering of two anions within a material often leads to low dimensionality in 

structural and physical properties. Layering of different anion types (Figure 1g) is 

common and leads to 2D conductivity or magnetic correlations when cations with 

unpaired electrons are present. The ZrCuSiAs structure type is a flexible arrangement that 

allows two different anions and cations to segregate into distinct layers according to 

HSAB (hard and soft acids and bases) principles. Many mixed-anion materials adopt the 

ZrCuSiAs type, notably the LnFeAsO family of layered magnetic conductors and (when 

suitably doped) high-Tc superconductors (Figure 6a), the p-type semiconductor LaCuSO, 

the ferromagnetic Kondo material CeRuPO, and the Ag-ion conductor LaAgSO.81 

Layered order of nitride and halide anions in MNX materials (M = Ti, Zr, Hf; X = Cl, Br, 

I) results in XMNNMX slabs separated by van der Waals gaps (Figure 6a) into which 

cations such as lithium are intercalated, leading to conductivity and superconductivity.82 

Anion ratios may be used to control dimensionality and connectivity of magnetic 

interactions. V4+ and Cu2+ both have spin S = 1/2 and so are of interest for quantum 

magnetic and superconducting properties, especially in low-dimensional structures that 
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are often found in mixed-anion materials. In V4+ oxyfluorides, the V=O vanadyl oxide 

anions do not link to other cations whereas fluorides readily form V–F–V bridges, 

enabling many structural topologies to be achieved. DQVOF (Diammonium 

Quinuclidinium Vanadium OxyFluoride; [NH4]2[C7H14N][V7O6F18]) is notable as a 

geometrically frustrated kagomé bilayer material with a gapless spin liquid ground state 

(Figure 6b).83 

Various synthetic copper minerals with Cu2+ (S = 1/2 ion) and mixed anions have 

been studied as geometrically frustrated quantum magnets that can show exotic ground 

states such as spin liquids, instead of the conventional Néel order. A good example is 

herbertsmithite, ZnCu3(OH)6Cl2 (Figure 6b), in which the Cu2+ ion is coordinated by two 

axial Cl– ions and four equatorial OH– ions with its spin residing on the 𝑑𝑥2−𝑦2 orbital.84 

The Cu2+ spins form a 2D kagomé lattice and are coupled to each other by strong 

superexchange interactions only via the OH– ions. The compound exhibits no long-range 

order down to 50 mK with fractionalized excitations (Figure 6b),85 owing to the strong 

frustration on the kagomé lattice. Volborthite Cu3V2O7(OH)22H2O and vesignieite 

BaCu3V2O8(OH)2 with trans-CuO4(OH)2 octahedra having different orbital arrangements 

composed of 𝑑𝑥2−𝑦2 / 𝑑𝑧2  and 𝑑𝑧2  orbitals, respectively, thus enriching the phase 

diagram of the kagomé antiferromagnet.86 

In the early copper oxide superconductor studies, two copper oxyhalides, 

Sr2CuO2F2+ 
87 and (Ca,Na)2CuO2Cl2,

88 played a role in identifying the superconducting 

mechanism (Figure 6a). Although these compounds possess F– and Cl– ions instead of 

O2– ions at the apical site above and below the Cu2+ ions, they are rendered 



 23 

superconducting with Tc = 46 and 26 K, respectively. This fact challenged the theoretical 

models proposing a vital role of the apical oxygen in the superconducting mechanism. 

Now it is well established that the high-Tc superconductivity occurs within the CuO2 sheet 

having a strong covalency between the Cu 𝑑𝑥2−𝑦2 and O 2p states, while the apical-site 

anions (oxide ions) are more ionic (Figure 1e), resulting in the 2D electronic state. 

The lack of p orbitals in the valence shell of H– (1s) effectively blocks the π-

symmetry exchange pathways (Figure 2c), a situation occurring in SrVIIIO2H with (t2g)
2, 

where the in-plane exchange via Vdπ–Opπ–Vdπ is much greater than the out-of-plane one 

via Vdπ–H1s–Vdπ (Figure 6c).9 The application of pressure to the Mott insulator drives a 

transition to a metal at ~50 GPa. Interestingly, despite the enormous compressibility of 

hydride, which is twice as compressible as oxide (Figure 2a), the electronic structure of 

the metallic phase is quasi-2D, meaning that the hydride ligand acts as a ‘π-blocker’. The 

dimensional control from 2D to 1D is possible in the n-legged spin ladder oxyhydrides 

Srn+1VnO2n+1Hn (n = 1, 2,.., ) (Figure 1g).89 

During the last decade, there has been remarkable progress in physics involving 

topological phases of matter, for which mixed-anion compounds play crucial roles in 

advancing this field. Binary chalcogenides Bi2Se3 and Bi2Te3 were thought to be potential 

three-dimensional topological insulators, but both suffered from native point defects and 

unintentional carrier doping. Alloying with these two compounds along with Sb-for-Bi 

substitution has established a highly insulating bulk and accessible Dirac carriers, 

accompanied by the observation of a sign change of the Dirac carriers (holes vs electrons) 
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with chemical potential (Figure 6d).90 The precise carrier control has been also utilized to 

achieve a topological surface state quantum Hall effect (Figure 6d).91 

The layered polar semiconductor BiTeI shows a huge bulk Rashba-type spin splitting 

(Figure 6d) that arises from the strong inversion asymmetry along the trigonal c axis 

induced by distinct covalent Bi-Te and ionic Bi-I bonds in the facial-BiTe3I3 coordination 

(Figure 1d).92 This built-in bulk polarity induce contrastive 2D electronic surface 

structures with heavy depleted (I-termination) and accumulated (Te-termination) 

electrons forming p-n junctions (Figure 6d).93 Although BiTeI is a nontopological 

insulator at ambient pressure, it is proposed that the strong spin-orbit interaction allows a 

pressure-induced transition to a strong topological insulator, where, due to the inversion 

asymmetry, a Weyl semimetal phase is present between the two insulating phases.94Error! 

Reference source not found. 

 

Outlook 

Increasing interest in solids based on mixed anions is expected to lead to new 

materials, some of which will make significant contributions to catalysis, energy 

conversion, and electronic devices, and will ultimately benefit industry in the coming 

decades. Functionality based on the earth-abundant, light elements usually present as 

anionic species (O, N, H, S, Cl, etc.) also offers the advantage of avoiding the inherent 

scarcity problems of metals such as lanthanides. The metastability of mixed-anion 

compounds increases the complexity of synthesis and can limit the ways in which these 
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materials can be used in devices. Therefore, chemically stabilizing these phases has to be 

considered when they are adapted for applications. 

Synthetically, there will still be much room to develop methodologies. For example, 

multiple synthetic tools are used together (e.g., topochemical reaction under high 

pressure) or in a multistep process (e.g., solvothermal reaction followed by 

electrochemical reaction), both providing further platforms to manipulate multiple anions 

in extended solids. One of the important challenges is how to control anion order/disorder 

– one idea may be to utilize the size flexibility of hydride (Figure 2a) to induce an order-

disorder transition by (chemical) pressure. Furthermore, exploratory synthesis can be 

joined with computational tools ranging from DFT calculations to machine learning to 

expedite a screening process. 

Regarding catalysis, this review has focused on visible-light-driven water splitting, 

but we believe that mixed-anion compounds can offer a variety of new possibilities, 

which would provide a large impact on chemical industry. In fact, an oxyhydride 

BaTiO2.5H0.5 has been very recently found to be an active catalyst for ammonia synthesis, 

which is remarkable given that Ti has been regarded as a ‘dead’ element in terms of 

heterogeneous catalysis.95 The lability of hydride (Figure 1f) may be responsible for this 

catalytic activity. Introduction of a new anion, not limited to hydride, into oxides will 

therefore be a useful strategy to explore a new catalytic function of ‘inert’ oxides. In-situ 

and operand analytic techniques will benefit and improve our understanding of these 

functions arising from mixed anion materials. The integration of DFT and machine 
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learning and experiment can lead to the most likely reaction mechanism, and also provide 

new concepts or guiding principles to be added in Figures 1 and 2. 

Most functional mixed-anion materials known to date, and providing the focus of 

this review, are oxide based, although non-oxide mixed-anion systems may also provide 

novel phases and phenomena.82,96,97,98 The additional inclusion of molecular anions (e.g. 

O2
–, BH4

–) can give rise to new aspects of anion-based materials (Figure 1h).99,100,101 For 

instance, the use of anisotropic anions such as O2
2– or S2– will result in local symmetry 

breaking and alter the hybridization with coordinating cations. Furthermore, mixed 

anions in surface, 2D-sheet materials,98 interfaces, porous and nano materials, and 

amorphous systems are an important area for both fundamental and applied research. 

There is still much to discover about the scientific principles and technological 

applications of mixed anion materials. It means that the future prospects of mixed anion 

materials are largely unknown at this time and this is what precisely makes the field so 

interesting moving forward. P. W. Anderson famously proposed that ‘More is Different’; 

in the world of anion-based materials we analogously conclude that: ‘Mixed is Different’. 
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Box 1. From oxides to mixed-anion compounds. Applications of oxides dates back to 

prehistoric times, when our ancestors found useful properties from natural stones 

including, e.g., arrowheads, magnets, pigments, gems, and even medicines. Subsequent 

efforts have been devoted to improvements and hunting for new functions. The 20th 

century was a prosperous era, with discoveries of synthetic oxides that sustain modern 

technology, as exemplified by the ferroelectric BaTiO3, yttria-stabilized zirconia (YSZ) 
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for solid oxide fuel cells, and LixMnO2, a cathode material for lithium batteries. The 

successful story of oxides (and other single-anion compounds such as fluorides, nitrides, 

chlorides) is largely due to their stability and ease of synthesis, along with development 

of structural characterization techniques such as X-ray diffraction. Numerous inorganic 

compounds (51,856 oxides, 1,581 nitrides, 2,978 fluorides in the Inorganic Crystal 

Structure Database (ICSD, https://icsd.fiz-karlsruhe.de), as of October 5, 2017) have been 

reported, most of which can be prepared by high-temperature solid-state reactions over 

1000 °C. A result of extensive research over the last century is that new materials 

accessible by ‘heat & beat’ exploration of new cation combinations may be exhausted 

soon. 

Focusing on the anions within a compound offers a solution to this problem. This can 

enhance the possible combinations of elements, but also offers more diversity. Cation-

based compounds are based on common coordination polyhedra as building units (e.g. 

CuO4 square planes). However, if several oxide anions are replaced with other anions, 

new and unusual coordination geometries may result. When these polyhedra, as new 

building blocks, are arranged to form an extended array, one can expect enhanced 

properties or fundamentally new phenomena. Since anions exhibit different 

characteristics (e.g., ionic radii, valence, polarizability, and electronegativity), selecting 

different anions can introduce a new dimension of flexibility for materials design and 

function. Despite such possibilities, the number of mixed-anion compounds available are 

limited: the number of recorded materials in ICSD are 1,266 for oxyfluorides, 612 for 

oxynitrides, 47 for oxyhydrides, 655 oxychalcogenides, and 312 oxypnictides. Note that 

mixed-anion compounds do not necessarily possess a heteroleptic coordination geometry 

around a transition metal. For example, a number of structures are comprised of 

alternating layers, each with a homoleptic coordination by a different anion, as found in 

Sr2MnO2Cu1.5S2 with alternating Sr2MnO2 and Cu1.5S2 layers.110 

Although some excellent overviews of mixed anion compounds have been provided, 

2,5,12,16,110 each covers relatively narrow range of materials and disciplines. This review 
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article is attempting to capture the broader fundamentals of these materials and draw new 

insights among materials classes. 

 

 

Figure 1. What mixed-anion compounds can do (Concepts 1a-1h). a, Extensive tuning 

of CFS. Replacement of one oxygen with a different anion allows extensive tuning of 

CFS even when the octahedron stays rigid. b, Non-oxide anion with lower 

electronegativity (vs. oxide) in semiconductors rises VBM and narrows the band gap, 

affording visible light applications like water splitting catalysis51,52 and pigmentation.49 

c, Local degree of freedom. An MO4X2 octahedron has cis and trans geometries, major 

parameters widely exploited in coordination chemistry, but less so in solid state chemistry. 
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When MO4X2 octahedra with cis or trans preference are connected to form an extended 

lattice, various nontrivial structures can appear, some of which have ‘correlated 

disorder’.34,38 d, Local coordination asymmetry. The Oh symmetry of the rigid 

octahedron is lost by replacing one and three ligands, leading to C4 and C3 symmetry. e, 

f, Covalency and ionicity can be tuned to acquire desired functions. A weakly bonded 

ligand to a metal centre can generate functions related to anion diffusion (anionic 

conductivity) and anion reaction at the surface (catalysis), whereas the structural stability 

is secured by strongly bonded counter ligands.13,69,70 g, Dimensional reduction. Alternate 

stacking of layers of different anions, which can be rationalized utilizing, e.g. HSAB 

concept and Hume-Rothery rule,78 have potential to enhance two-dimensionality, leading 

to novel properties including high Tc superconductivity. 81,82,108 h, Inclusion of molecular 

anions further widens possibilities. Available parameters include anisotropic shape, 

magnetic moment (e.g. S = 1/2 moment in O2
–) and additional (anisotropic) bonding (e.g. 

hydrogen bonding in BH4
–).99,100,101 (250) 
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Figure 2. Specific features of hydride anion H– (Concepts 2a-2d). a, As opposed to 

other anions, H– is highly flexible in size (right, exaggerated for clarity), with ionic radii 

of 127 ~ 152 pm found in metal hydrides.105 This means that H– (or more precisely H–) 

can adapt itself to a given local environment. This appears to hold for oxyhydrides12 and 

is important for the hydride detection and characterization by 1H-NMR (Figure 4a).44 

High-pressure study revealed that H– is extremely compressible.9 b, A periodic table of 

elements, taken from Ref. 1. Justifications of hydrogen positioning on carbon arises from 

a half filled outer shell and a similarity in electronegativity to group IV elements (C, Si…). 

c, The lack of  symmetry in H– 1s orbital allows this ligand to act as a “-blocker” (or 

orbital scissors) with respect to t2g orbitals of a transition metal, leading to dimensional 

reduction in Figure 1g.9 A fairly strong  bonding is suggested between eg and H– 1s 

orbitals.8 d, Hydride anion is regarded as a highly labile ligand, which, combined with 

the electron donating nature of hydride, allow versatile opportunities for oxyhydrides, 

including hydride anion conductivity,70 topochemical reactions,13,14 and catalysis.95 

Shown in this panel is a theoretically proposed non-trivial hydride diffusion process in 

SrTiO3,
109 involving electron transfer from/to the titanium cation, being analogous to the 

so-called proton coupled electron transfer (PCET) – “electron coupled hydride transfer” 

(ECHT). Fixation of such transient “two-electron released state” is realized in H– ion-

doped 12CaO·7Al2O3 by UV-light excitation.47 (249) 
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Figure 3. Synthetic approaches for mixed anion compounds. a, traditional high 

temperature solid state reactions. Controlled atmospheres such as flowing gases (NH3, 

Cl2, CS2, etc…) and in a vacuum are often necessary. Gas-phase or surface reactions may 

be important. For example, owing the dissociation of NH3 to H2 and inert N2 at elevated 

temperatures, processing conditions such as an ammonia flow rate need to be carefully 

chosen. b, Topochemical reactions to allow a rational design of structures (Figure 1f). 

Low temperature treatment of oxides with some reagents cause different anions to insert 

or exchange while maintaining the structural features. Multistep reactions have been also 

accessible.13,14 c, Epitaxial thin film growths and solvothermal reactions as a bottom-up 

process. Chemical bonding from ions of a substrate lattice yield metastable phases.19 

Local geometry can be manipulated by applying tensile or compressive strain from the 

substrate.20,21 Solvothermal reactions offer an opportunity to prepare compounds with 

well-defined local structures. High throughput screening is possible with Teflon pouch 

approach. d, High pressure reactions. High pressure can prevent some reagents from 

dissociation or evaporation (upper),3,41 and also stabilize dense structures (lower).27 e, 

Computational tools. In particular, the rapid advancement of computational methods 

provides unprecedented opportunities for predicting and understanding mixed anion 

compounds. DFT = Density Functional Theory, MC = Monte Carlo, ML = Machine 

Learning, AI = Artificial Intelligence. (220) 
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Figure 4. Chemical and structural characterizations for mixed-anion compounds. 

Hierarchical representations from long-range ordered structures to correlated disordered 

states, and to local structures. a, Predictable anion distribution in mixed anion (O, N, F, 

Cl, Br) crystals based on the Pauling’s second rule: a correlation between the charge of 

an anion site with the calculated bond strength sums for the relevant site from X-ray 

diffraction (XRD) and neutron diffraction (ND) refinements.33 For example, the apical 

site of the Nb(O,F)6 octahedron in K2NbO3F is favorably occupied by F–, while the 



 35 

equatorial site by N3– in Sr2TaO3N. b, Identification of H– using the correlation between 

the chemical shift () of 1H-NMR and the M–H distance (dM–H), where M is the 

neighboring cation (Figure 2a).44 An opposite dependence is seen for OH–. c, 

Characterization of cis- and trans-coordination in AMO2N perovskites (Figure 1c). (right) 

a tetragonal SrTaO2N structure (P4/mmm) with the equatorial site occupied equally by 

O/N and the apical site completely by O, giving disordered cis-chains, where thick/thin 

lines correspond to M–N–M/M–O–M connections.34 This model was deduced from the 

average site occupancies in b. The correlated anion disorder in AMON2 perovskites is 

chemically symmetric through reversal of O and N. PDF analysis of neutron total 

scattering data for BaTaO2N reveals local O/N ordering originated from favorable cis-

configuration of TaO4N2 octahedra.39 (left) The trans-coordination in SrTaO2N film 

under lateral compressive strain is probed by polarized XANES and STEM-EELS.40 

Some data are reproduced with permission from each journal. (249) 
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Figure 5. Mixed-anion driven chemical functions. a, Visible-light photocatalysis 

(Concept 1d). (left) Flat-band potential as a function of their band gap, showing an 

empirical relation, EFB(NHE) ≈ 2.94 – Eg, for d0- or d10 oxide semiconductors (‘Scaife 

plot’).50 (right) Powders of GaN, ZnO and their solid solution, and a time course data for 

overall water splitting under visible light using (Ga0.58Zn0.42)(N0.58O0.42) with RuO2 

nanoparticle cocatalyst.14,58 b, Pleochroism (Figure 1a). Ca3ReO5Cl2 crystals showing 

different optical densities for incident light polarized along the a, b and c axes.67 c, Battery 

applications. (top left) Energy of the redox couples of iron phosphate frameworks relative 

to the Fermi level of metallic lithium (Figure 1b).71 (bottom left) Capacity versus cycle 

number for MoO2.8F0.2 over the first 18 cycles (Figure 1b, e).75 (right) A pure H– 

conductivity.70 Discharge curve for a solid-state battery with the Ti/La2LiHO3/TiH2 

structure (Figure 2a, b). d, Thermoelectrics. (left) Brillouin zone of PbTe1–xSex, where the 

anion tuning allows creation of low degeneracy hole pockets (orange) and the high 

degeneracy hole pockets (blue).80 (right) Microstructures for nanoscale precipitates of a 

phase-segregated (2.5% K-doped) PbTe0.7S0.3.
79 The lower panels show an enlarged 

image of cubic precipitates with the three-layered structure and its Fourier-transformed 

image. Some data shown here are reproduced with permission from each journal. (208) 
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Figure 6. Mixed-anion driven physical functions. a, Superconducting transition 

temperatures as a function of the year of discovery, where symbols of mixed anion 

compounds are highlighted in color. Layered structures of parent high-Tc superconductors 

HfNCl,82 LaOFeAs108 and Sr2CuO2Cl2
88 are shown (Figure 1g). b, (top) Geometrical 

frustration in ZnCu3(OH)6Cl2, Cu3V2O7(OH)22H2O and BaCu3V2O8(OH)2 with the S = 

1/2 kagomé lattice.84,86 A Cu-triangle unit is formed by the chlorine anion of a three trans-

Cu(OH)4Cl2 octahedra in the former, while by sharing the OH anion of a three trans-

CuO4(OH)2 octahedra in the latter two compounds. Different orbital ordering patterns 

appear in these compounds, leading to various exotic quantum states. (bottom) A spin 

liquid ground state and inelastic neutron scattering on ZnCu3(OH)6Cl2 showing 

fractionalized excitations.85 c, (upper) Crystal and electronic structures of SrVIIIO2H with 

trans-VO4H2 octahedra.9 H– 1s orbitals, orthogonal with V t2g orbitals act as orbital 

scissors (or -blockers), resulting in 2D electronic structures (Figure 2c). (lower) 2D-to-

1D dimensional crossover in serial n-legged spin ladders, Srn+1VnO2n+1Hn (Figure 1g).89 

d, (upper left) Band dispersions of the cation/anion co-substituted (Bi,Sb)2(Te,Se)3 with 
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a tunable Dirac cone.90 (upper right) Topological surface state quantum Hall effect in the 

intrinsic topological insulator (Bi,Sb)2(Te,Se)3.
91 (lower left) Giant bulk Rashba effect in 

BiTeI with polar facial-BiTe3I3 octahedral layers (Figure 1d).92 (lower right) 

Spectroscopic imaging scanning tunneling microscopy of BiTeI evidencing the ambipolar 

2D carriers at the surface, indicating the formation of lateral p-n junctions.93 Some data 

shown here are reproduced with permission from each journal. (248) 
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1.36 (CsF) 

0.82  10
–3.000/V

 

P 
31

P 1/2 100 5.13 1011.8 72 2.19 –3 

[Ar] 

212 

 

S  

(
32

S) 
33

S 3/2 

 

95.02 

0.76 

2.847 

2.804 

4.74 

999.6 200 

(–492) 

2.58 –2 

[Ar] 

VI 184 4.60 (MgS)   

6.41 (BaS) 

Cl 
 

 9.5770 1251.2 349 3.16 –1 VI 181 2.88 (LiCl)  
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35
Cl 3/2 

37
Cl 3/2 

75.77 

24.23 

11.65 

3.08 

[Ar] 3.47 (RbCl) 

3.88  10
–1.800/V

 

As 
75

As 3/2 100 6.58 947.0 78 2.18 –3 

[Kr] 

222 

 

Se 
 

77
Se 1/2 

 

7.6 

7.970 

8.25 

941.0 195 2.55 –2 

[Kr] 

VI 198 

 

Br 
 

81
Br 3/2 

 

49.31 

6.795 

6.79 

1139.9 325 2.96 –1 

[Kr] 

VI 196 3.99 (LiBr) 

4.67 (RbBr)  

Sb 

  

5.57 834 103 2.05 –3 

[Xe] 

  

Te 

  

5.80 869.3 190 2.10 –2 

[Xe] 

VI 221 

 

I 
127

I 5/2 100 5.28 1008.4 295 2.66 –1 

[Xe] 

VI 220 

 

Bi 

  

8.532 703 

 

2.02 –3 

[Rn] 

  

 

a Ref. 102; Isotopes with zero nuclear spin are indicated in parentheses. 

b Ref. 102. 

c NIST center for neutron research, Neutron scattering lengths and cross sections, 

https://www.ncnr.nist.gov/ resources/n-lengths/ 

d,f Ref. 103. 

e Ref. 103; Second electron affinity is indicated in parentheses. 

g Ionic radii with104 and without103 specifying the coordination number. Ionic radii for H 

are derived from those discussed in Ref. 105. 

h Values with chemical formula in parentheses are those experimentally estimated in 

compounds with rock salt structure.106 The equations as a function of the anion molar 

volume, V, evaluated in Ref. 107. 
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