1,194 research outputs found

    Where Are the Baryons? II: Feedback Effects

    Full text link
    Numerical simulations of the intergalactic medium have shown that at the present epoch a significant fraction (40-50%) of the baryonic component should be found in the (T~10^6K) Warm-Hot Intergalactic Medium (WHIM) - with several recent observational lines of evidence indicating the validity of the prediction. We here recompute the evolution of the WHIM with the following major improvements: (1) galactic superwind feedback processes from galaxy/star formation are explicitly included; (2) major metal species (O V to O IX) are computed explicitly in a non-equilibrium way; (3) mass and spatial dynamic ranges are larger by a factor of 8 and 2, respectively, than in our previous simulations. Here are the major findings: (1) galactic superwinds have dramatic effects, increasing the WHIM mass fraction by about 20%, primarily through heating up warm gas near galaxies with density 10^{1.5}-10^4 times the mean density. (2) the fraction of baryons in WHIM is increased modestly from the earlier work but is ~40-50%. (3) the gas density of the WHIM is broadly peaked at a density 10-20 times the mean density, ranging from underdense regions to regions that are overdense by 10^3-10^4. (4) the median metallicity of the WHIM is 0.18 Zsun for oxygen with 50% and 90% intervals being (0.040,0.38) and (0.0017,0.83).Comment: 44 pages, 17 figures, high res version at http://www.astro.princeton.edu/~cen/baryonII.ps.g

    Indexing, Unchained

    Get PDF
    Improved toughness is one of the central goals in the development of wear-resistant coatings. Previous studies of toughness in transition metal nitride alloys have addressed the effects of chemical composition in these compounds. Herein, we use density functional theory to study the effects of various metal sublattice configurations, ranging from fully ordered to fully disordered, on the mechanical properties of VM2N and TiM2N (M2 = W, Mo) ternary alloys. Results show that all alloys display high incompressibility, indicating strong M-N bonds. Disordered atomic arrangements yield lower values of bulk moduli and C11 elastic constants, as well as higher values of C44 elastic constants, compared to ordered structures. We attribute the low C44 values of ordered structures to the formation of fully-bonding states perpendicular to the applied stress. We find that the ductility of these compounds is primarily an effect of the increased valence electron concentration induced upon alloying

    Disk Galaxy Formation in a LambdaCDM Universe

    Full text link
    We describe hydrodynamical simulations of galaxy formation in a Lambda cold dark matter (CDM) cosmology performed using a subresolution model for star formation and feedback in a multiphase interstellar medium (ISM). In particular, we demonstrate the formation of a well-resolved disk galaxy. The surface brightness profile of the galaxy is exponential, with a B-band central surface brightness of 21.0 mag arcsec^-2 and a scale-length of R_d = 2.0 h^-1 kpc. We find no evidence for a significant bulge component. The simulated galaxy falls within the I-band Tully-Fisher relation, with an absolute magnitude of I = -21.2 and a peak stellar rotation velocity of V_rot=121.3 km s^-1. While the total specific angular momentum of the stars in the galaxy agrees with observations, the angular momentum in the inner regions appears to be low by a factor of ~2. The star formation rate of the galaxy peaks at ~7 M_sun yr^-1 between redshifts z=2-4, with the mean stellar age decreasing from \~10 Gyrs in the outer regions of the disk to ~7.5 Gyrs in the center, indicating that the disk did not simply form inside-out. The stars exhibit a metallicity gradient from 0.7 Z_sun at the edge of the disk to 1.3 Z_sun in the center. Using a suite of idealized galaxy formation simulations with different models for the ISM, we show that the effective pressure support provided by star formation and feedback in our multiphase model is instrumental in allowing the formation of large, stable disk galaxies. If ISM gas is instead modeled with an isothermal equation of state, or if star formation is suppressed entirely, growing gaseous disks quickly violate the Toomre stability criterion and undergo catastrophic fragmentation.Comment: 14 pages, 12 figures, LaTex (emulateapj.cls), submitted to ApJ, high resolution images available at http://www-cfa.harvard.edu/~brobertson/papers/galaxy

    Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation

    Full text link
    The electronic structure of nanolaminate Ti2AlN and TiN thin films has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole transition matrix elements. Three different types of bond regions are identified; a relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic and crystal structures of Ti2AlN and TiN are discussed in relation to the intercalated Al layers of the former compound and the change of the materials properties in comparison to the isostructural carbides.Comment: 18 pages, 7 figures; http://link.aps.org/doi/10.1103/PhysRevB.76.19512

    On spherical twisted conjugacy classes

    Full text link
    Let G be a simple algebraic group over an algebraically closed field of good odd characteristic, and let theta be an automorphism of G arising from an involution of its Dynkin diagram. We show that the spherical theta-twisted conjugacy classes are precisely those intersecting only Bruhat cells corresponding to twisted involutions in the Weyl group. We show how the analogue of this statement fails in the triality case. We generalize to good odd characteristic J-H. Lu's dimension formula for spherical twisted conjugacy classes.Comment: proof of Lemma 6.4 polished. The journal version is available at http://www.springerlink.com/content/k573l88256753640

    The halo model and numerical simulations

    Full text link
    Recently there has been a lot of attention focussed on a virialized halo-based approach to understanding the properties of the matter and galaxy power spectrum. A key ingredient in this model is the number and distribution of galaxies within dark matter halos as a function of mass. This quantity has been predicted from semi-analytic modeling and from fits to observational data. Here we present predictions for the occupation number and spatial distribution of sub-halos based on a high-resolution hydrodynamical simulation including cooling, star-formation and feedback.Comment: 4 pages, 3 figures, matches version accepted by ApJ

    Adaptive hard and tough mechanical response in single-crystal B1 VNx ceramics via control of anion vacancies

    Full text link
    High hardness and toughness are generally considered mutually exclusive properties for single-crystal ceramics. Combining experiments and ab initio molecular dynamics (AIMD) atomistic simulations at room temperature, we demonstrate that both the hardness and toughness of single-crystal NaCl-structure VNx/MgO(001) thin films are simultaneously enhanced through the incorporation of anion vacancies. Nanoindentation results show that VN0.8, here considered as representative understoichiometric VNx system, is ~20% harder, as well as more resistant to fracture than stoichiometric VN samples. AIMD modeling of VN and VN0.8 supercells subjected to [001] and [110] elongation reveal that the tensile strengths of the two materials are similar. Nevertheless, while the stoichiometric VN phase systematically cleaves in a brittle manner at tensile yield points, the understoichiometric compound activates transformation-toughening mechanisms that dissipate accumulated stresses. AIMD simulations also show that VN0.8 exhibits an initially greater resistance to both {110} and {111} shear deformation than VN. However, for progressively increasing shear strains, the VN0.8 mechanical behavior gradually evolves from harder to more ductile than VN. The transition is mediated by anion vacancies, which facilitate {110} and {111} lattice slip by reducing activation shear stresses by as much as 35%. Electronic-structure analyses show that the two-regime hard/tough mechanical response of VN0.8 primarily stems from its intrinsic ability to transfer d electrons between 2nd-neighbor and 4th-neighbor (i.e., across vacancy sites) V-V metallic states. Our work offers a route for electronic-structure design of hard materials in which a plastic mechanical response is triggered with loading
    corecore