We describe hydrodynamical simulations of galaxy formation in a Lambda cold
dark matter (CDM) cosmology performed using a subresolution model for star
formation and feedback in a multiphase interstellar medium (ISM). In
particular, we demonstrate the formation of a well-resolved disk galaxy. The
surface brightness profile of the galaxy is exponential, with a B-band central
surface brightness of 21.0 mag arcsec^-2 and a scale-length of R_d = 2.0 h^-1
kpc. We find no evidence for a significant bulge component. The simulated
galaxy falls within the I-band Tully-Fisher relation, with an absolute
magnitude of I = -21.2 and a peak stellar rotation velocity of V_rot=121.3 km
s^-1. While the total specific angular momentum of the stars in the galaxy
agrees with observations, the angular momentum in the inner regions appears to
be low by a factor of ~2. The star formation rate of the galaxy peaks at ~7
M_sun yr^-1 between redshifts z=2-4, with the mean stellar age decreasing from
\~10 Gyrs in the outer regions of the disk to ~7.5 Gyrs in the center,
indicating that the disk did not simply form inside-out. The stars exhibit a
metallicity gradient from 0.7 Z_sun at the edge of the disk to 1.3 Z_sun in the
center. Using a suite of idealized galaxy formation simulations with different
models for the ISM, we show that the effective pressure support provided by
star formation and feedback in our multiphase model is instrumental in allowing
the formation of large, stable disk galaxies. If ISM gas is instead modeled
with an isothermal equation of state, or if star formation is suppressed
entirely, growing gaseous disks quickly violate the Toomre stability criterion
and undergo catastrophic fragmentation.Comment: 14 pages, 12 figures, LaTex (emulateapj.cls), submitted to ApJ, high
resolution images available at
http://www-cfa.harvard.edu/~brobertson/papers/galaxy