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Ion mass spectrometry was used to investigate discharges formed during high power impulse

magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite

target in Ar and Ar/N2 ambient. Ion energy distribution functions (IEDFs) were recorded in

time-averaged and time-resolved mode for Arþ, Cþ, N2
þ, Nþ, and CxNy

þ ions. An increase of N2

in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy

constant) results for the HiPIMS discharge in a significant increase in Cþ, Nþ, and CNþ ion

energies. Arþ, N2
þ, and C2Nþ ion energies, in turn, did not considerably vary with the changes in

working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly

for Cþ ions, compared to DCMS. The time evolution of the plasma species was analyzed for

HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and

later during the pulse-on time molecular ions, in particular CNþ and C2Nþ. The formation of

fullerene-like structured CNx thin films for both modes of magnetron sputtering is explained by ion

mass-spectrometry results and demonstrated by transmission electron microscopy as well as

diffraction. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733692]

I. INTRODUCTION

Carbon based thin films comprise all three valence

hybridization states (sp3, sp2, sp) yielding manifold bonding

configurations and microstructures, including amorphous

(a-C), graphitic, polymer-like, and diamond-like carbon

(DLC).1,2 Consequently, the properties of such compounds

can be modified over a wide range justifying the intense

research and development of this technologically important

material.1,3–7 In the past, carbon films have been prepared by

numerous deposition techniques among them are PECVD

(plasma enhanced chemical vapor deposition),8 DCMS

(direct current magnetron sputtering),9 r.f.-MS (radio fre-

quency magnetron sputtering),10 laser ablation,3,4 as well as

filtered cathodic arc deposition.8,11 DLC coatings, in particu-

lar, were reported to exhibit a superior wear resistance, hard-

ness, chemical inertness1,5,12,13 and biocompatibility,14 as

well as electrical insulation and infrared transparency.15

Consequently, carbon coatings found their way into industry,

for example, as wear resistant protective layers16 and optical

coatings for infrared and visible ranges.15 Their properties

might also have potential in very large scale integration

(VLSI), medical implants,14 and applications in green

technology.

Carbon films may be further functionalized by introduc-

ing another element into the C matrix. Nitrogen, for exam-

ple, is likewise able to adopt numerous bonding structures.

Thus, carbon-nitride (CNx) compounds exhibit several

allotropes, depending on how the carbon network is

arranged. Among them graphite-like, fullerene-like (FL),

and DLC-like compounds can be found.17–19 This implies

further changes with regards to the film properties such as

hardness, density, and film stress.18–22 For amorphous and

FL-CNx films grown by DCMS moderate-to-high hardness

values, ranging between 6 GPa and 15 GPa were

reported.17,19,23 Moreover, a superior resiliency (elastic re-

covery of up to 98%) as well as a reduced wear and friction,

similar to those of DLC films, were shown.19,24 Thus,

FL-CNx thin films were described with the term “super hard

rubber.”24 Naturally, such properties make CNx thin films

attractive for tribological coatings. Important DCMS growth

parameters for the modification of the CNx thin film micro-

structure and consequently properties are the substrate tem-

perature (Ts), the degree of ion-bombardment, and the

nitrogen-to-argon flow ratio fN2/Ar.
24

Novel ionized deposition techniques such as HiPIMS

(high power impulse magnetron sputtering) widen the pro-

cess window to produce carbon-based wear resistant thin

films with even further tailored functional properties. From a

historical perspective, HiPIMS was developed from DCMS

and first described in 1999 by Kouznetsov et al.25 Due to the

operation of the sputtered target with short, but high power

pulses, ultra dense, and highly ionized plasmas were reported

for commonly sputtered metals.26,27 The increased ionization

is a consequence of the significantly reduced mean free path

for collisions with plasma electrons (electron impact ioniza-

tion), of approximately 10 mm in contrast to 500 mm for

DCMS.25,27,28 The higher amount of ionized sputtered

material was reported to create denser films attributed to an
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increased surface mobility of the adatoms arriving at the

substrate.29–31 Furthermore, HiPIMS films were found to ex-

hibit in many cases a changed morphology compared to films

sputtered under comparable DCMS or cathodic arc condi-

tions. However, only few reports deal with HiPIMS employ-

ing a graphite target. DeKoven et al. reported ionized flux

fraction to be as low as 4.5% for graphite.32 Hecimovic et al.
presented first ion energy distribution functions (IEDFs)

measured for C sputtered in Ar atmosphere in context with

data obtained from Cr and Ti.33 They found increased metal

ion-to-gas ion ratios with an increased sputter yield of the

target material. Additionally, the origin of IEDFs was inves-

tigated and two contributions were established; the first aris-

ing due to low energetic ions originating from ions of the

post discharge, whereas the second is a broad high-energy

tale, which increased with increasing target current.

Recently, Hecimovic et al.34 published a comparative study

on the temporal evolution of ion fluxes obtained from several

elemental targets, including C, during the HiPIMS discharge

in argon. They suggested that the ion energy and the ion life

span depend on collisions with plasma particles, for all con-

sidered elements. The life span was found to be longest for

heavy mass elements due to rarefaction. Authors concluded

that the energy losses are highest for masses similar to Ar.

Furthermore, the metal ion energy was found to correlate

with its binding energy in the solid. However, to our best

knowledge, no reports have been published as for the investi-

gation on the reactive graphite HiPIMS process in Ar/N2

atmosphere. The characterization of the plasma becomes

vital not only for an improved understanding of the synthesis

process of CNx compounds but also in order to comprehend

film properties.

Here, we report on mass-spectrometry measurements

carried out with a graphite target, sputtered either in HiPIMS

or in DCMS mode in Ar and Ar/N2 atmosphere. Time-

averaged IEDFs obtained during HiPIMS are compared to

those acquired for the DCMS processes. In addition time-

resolved HiPIMS, data are collected and analyzed in detail.

Conclusions on the CNx growth mechanisms and the C and

CNx film microstructure are drawn from mass-spectrometry

results in combination with the evaluation of target current

and target voltage waveforms as well as transmission elec-

tron microscopy (TEM) images and selected area electron

diffraction (SAED) patterns.

II. EXPERIMENTAL DETAILS

All ion mass-spectrometry measurements and film depo-

sitions were performed in the industrial coating system

CC800/9 (CemeCon AG, Germany). Here, two out of four

cathodes can be driven in HiPIMS mode; furthermore, the

system offers the possibility to operate those two HiPIMS

cathodes, as well as, the substrate table simultaneously in

HiPIMS mode. Plasma characterization and film depositions

were carried out in both modes—HiPIMS and DCMS. For

our investigations, one rectangular target with an area of

440 cm2 was sputtered in an Ar or Ar/N2 atmosphere at a

constant pressure of 400 mPa in the power-regulated mode. In

the case of HiPIMS, the cathode was driven with frequencies

of 300 Hz and 500 Hz, the average power ranged between

700 W and 2000 W, and the pulse width was kept constant in

all processes at 200 ls. DCMS was carried out at a power of

2000 W.

The IEDFs were measured in a time-averaged and time-

resolved mode for Cþ, Arþ, Nþ, N2
þ, CNþ, and C2Nþ ions

with a PSM003 unit from Hiden Analytical, UK. This mass

spectrometer is equipped with a quadrupole mass analyzer

and allows the measurement of masses up to 300 amu with a

resolution of 0.1 amu. Further details regarding the mass

spectrometer are given in Ref. 35. In order to a allow com-

parisons, all measurements were carried out with the same

global settings. During mass-spectrometry measurements,

the cathode faced the spectrometer orifice at a distance of

210 mm. Time-averaged data were measured in the range of

0.4 eV–100 eV applying step widths of 0.2 eV. Furthermore,

the dwell time was set to 300 ms, corresponding to an infor-

mation depth of at least 90 pulses at each data point. In order

to acquire time-resolved data, the mass-spectrometry meas-

urements were triggered by a signal from a Tektronix

DPO4054 500 MHz bandwidth digital oscilloscope. The

delay time ranged from 40 ls up to 300 ls with an increment

time of 20 ls and was related to the onset of the power pulse

to the cathode. A total acquisition time of 1 ms per data point

was applied. Ion energies were scanned in a range between

0 eV and 30 eV with a resolution of 0.5 eV. All time-resolved

data presented were corrected for the ion time-of-flight

(TOF) within the mass spectrometer. The approach given in

Ref. 35 was used to show the plasma composition at the

spectrometer orifice rather than at the detector. The TOF of

the ions depends on their initial kinetic energy, but due to

the fact that within an energy range between 0 eV and

100 eV, the TOF differs not more than 10%, a value of 8 eV

was used for all calculations. Target current and target volt-

age waveforms were recorded simultaneously.

Thin film depositions were carried out using the same,

above mentioned power settings at the cathode. The sub-

strates faced the rectangular, pure graphite target at a dis-

tance of 60 mm. In the case the films were deposited by

HiPIMS, a pulsed bias voltage (Vb) of �100 V was applied,

whereas a DC bias voltage of �100 V was applied during

depositions in DCMS mode. Depositions were carried out at

room temperature (RT), at Ts¼ 110 �C (LT—low tempera-

ture) and at Ts¼ 430 �C (HT—high temperature).

Using cross-sectional scanning electron microcopy

(SEM, LEO 1550 Gemini, Zeiss, Germany), the deposition

rates were determined. Composition and areal atomic density

(atoms/cm2) of the CNx films were evaluated using time-of-

flight elastic recoil detection analysis (ToF-ERDA) applying

an 36 MeV 127I9þ ion beam at 22.5� incidence angle relative

to the surface.36,37 Data were stored event by event in list

mode and analyzed off-line. Only the data obtained during

the first minutes (yielding sufficient statistics) were used.

For plan-view TEM, CNx films of less than 50 nm in

thickness were deposited on cleaved NaCl substrates. These

films were floated off in water, rinsed twice, and collected on

a TEM Cu grid. Cross-sectional TEM was carried out on

cleaved samples.38 Plan-view and cross-sectional samples

were examined in a Tecnai G2 TF 20 UT TEM (FEI,
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The Netherlands). SAED patterns were exposed with a CCD

camera in the same instrument. The diffraction patterns were

processed with process diffraction software.39 The degree of

structuring (fullerene-like, graphitic or plain amorphous)

was assessed in evaluating peak intensities (int) of the ring

�3.5 Å and the �2 Å ring, extracted from the SAED pattern.

Setting both intensities into relation (int(3.5 Å)/int(2 Å))

depicts the degree of structure; the higher the value, the

higher is the degree of graphitic short range ordering.40

III. RESULTS AND DISCUSSION

A. Target current and target voltage waveforms

The energy per pulse (Ep), as a commonly used process

parameter in order to compare different processes settings,

can be extracted by integrating the product of target current

and target voltage over the pulse duration dp. In Figure 1, tar-

get current and target voltage waveforms for different Ep are

illustrated for a pure graphite target, sputtered in Ar atmos-

phere. Evident is that the voltage is not constant throughout

the entire pulse but decreases as soon as the charge is with-

drawn from the capacitors. The target current scales accord-

ing to: I(t)¼C dU(t)/dt, where I(t) and U(t) are assigned to

the target current and target voltage, respectively, in depend-

ency of time, and C is the capacitance. A comparison of tar-

get current and target voltage waveforms for commonly

sputtered metals such as Ti, Cu, or Cr (see e.g., Ref. 41) to

corresponding data plots for C shows clearly that the maxi-

mal applicable pulse energy is reduced in the later case. This

implies a decreased total number of sputtered ions, owing to

the comparatively high ionization potential of carbon

(11.26 eV) and the low sputter yield of 0.197 atoms/ion

(in Ar with 500 eV) in the C/Ar discharge. For the present

sputter system and process settings, stable processes are

obtained for pulse energies lower than 6.0 J for the C/Ar

discharge.

Typical HiPIMS conditions on industrial-size targets are

characterized by dynamic changes in the target current wave-

forms as can be seen in Figure 1 during the first 130 ls of

the pulse. The rather stable current values, which can be

observed in the last 70 ls of the pulses, reflect DCMS condi-

tions. As can be seen in Figure 1, the drop of the voltage and

thus the rise in current is not as pronounced in the C/Ar dis-

charge compared to, e.g., the Cr/Ar discharge described by

Greczynski and Hultman,41 where pulse energies of up to

25 J were employed. The target current waveforms show

instead a smooth transition from HiPIMS to DCMS dis-

charge regimes. Interestingly, the C discharge for EP< 3 J

does not exhibit this distinct transition from the dynamic

HiPIMS character to the steady DCMS regime, implying

that a pulsed process under DCMS conditions takes place.

As the pulse energy rises above 3.5 J, the transition from

HiPIMS to DCMS becomes more apparent with a dynamic

region (0 ls–130 ls) and a less dynamic region (130 ls–

200 ls), where the target current decreases to a mean value

of 11.5 A. The transition from HiPIMS to DCMS regimes,

seen for EP> 3.5 J, can potentially be ascribed to a combina-

tion of the effects of gas rarefaction and the decay of the

cathode voltage.42 However, the effect of gas rarefaction

(the depletion of sputter gas in the vicinity of the target)43

should be less pronounced in this case as the target current is

comparatively low, hence, the sputtered flux is limited as

well. Therefore, an effect of gas heating is not as prominent

for the C discharge.

Figure 2 shows target current and target voltage wave-

forms recorded during the carbon discharge as a function of

FIG. 1. Target current and target voltage waveforms for HiPIMS with dif-

ferent pulse energies and a pulse duration of 200 ls in a C/Ar discharge.

FIG. 2. Target current and target voltage waveforms in dependence of the

N2 content in the sputter gas for selected HiPIMS processes (for reasons of

clarity, data relating to five different N2 contents are shown). The inset illus-

trates the peak target current (Î) with increasing N2 content in the sputter gas

for the full experimental range.
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N2 in the sputter gas. Here, processes were carried out at

constant process pressures of 400 mPa and in all cases a sim-

ilar Ep of 4 J was applied. The above described characteris-

tics are present throughout the whole range of introduced

reactive gas contents. Apparent features related to the pres-

ence of N2 in the plasma are the considerable changes in the

peak target current, and the current peak shift towards

the end of the pulse. This suggests complex interactions in

the plasma and/or at the target surface, compared to the case

when C is sputtered in pure Ar. As can be seen in the inset of

Figure 2, the peak target current has a minimum between

20% and 70% of N2 in the sputter gas. Upon exceeding 70%

of reactive gas in the process, the target current rises again.

As C is sputtered in pure N2 atmosphere, it reaches only

82% compared to the process in pure Ar. The observation of

a decreased target current is characteristic for a suppressed

amount of charged, sputtered species that form in the vicinity

of the target and at the surface of the target whenever a reac-

tive gas is involved in the sputter process. Thus, the effects

resulting from changes in the secondary electron emission

yield (cSE) should be considered in this respect.44

The changed cSE is a consequence from an altered sput-

ter gas composition and the reactions taking place at the sur-

face of the target. For the approximation of cSE, Eq. (1)42 is

used.

cSE ¼ 0:032ð0:78IP � 2/Þ; (1)

As can be drawn from Eq. (1), cSE merely depends on IP, the

ionization potential of the impinging particles (sputter gas)

on the target surface and /, the work function of the target

material. It pertains to the argument that the ionization

potentials for the most abundant species observed in the

plasma such as nitrogen (IPN¼ 14.5 eV (Ref. 45)), molecular

nitrogen (IPN2¼ 15.6 eV (Ref. 45)), CN (IPCN¼ 14.5 eV

(Ref. 46)), and C2N (IPC2N¼ 12.8 eV (Ref. 46)) are lower

compared to that of Ar (IPAr¼ 15.8 eV (Ref. 47)). The

approximation of the difference in cSE when the sputter pro-

cess is carried out in pure Ar and pure N2, results in a lower

secondary electron yield of 6% for the discharge in pure N2.

Here, the same / was used in both cases (sputtering in Ar or

N2), since the exact / of a modified target surface by nitro-

gen is unknown. The slight decrease of 6% obtained for cSE

cannot account for a lower target current of 17%. Thus, the

primary reason for this discrepancy seems to be the assumed

constant work function of the target surface, when the sputter

process is carried out in pure nitrogen. Naturally, the work

function of the target surface depends on its chemistry and is

altered during reactive sputtering.

In adopting the theory of a changed target surface chem-

istry with regards to the applied HiPIMS processes, it

becomes conceivable that the pulse-off duration is suffi-

ciently long for a reaction of the yet again “virgin” target

surface (after the power pulse). Meaning, just after the power

pulse, the target surface exhibits a low amount of C-N bonds,

but sufficient C dangling bonds. Consequently, a recreation

of the CxNy target surface chemistry can take place due to

impinging Nx gas ions. Therefore, it is concluded that the

changes in the discharge current seen for gradually increasing

nitrogen contents are due to the changed target surface chem-

istry and to a smaller extent the changes in sputter gas chem-

istry. Previous studies on C sputtered in Ar/N2 ambient by

DCMS reported the physical sputter process to be signifi-

cantly influenced by chemical sputtering provided the pro-

cess took place with particle energies below 100 eV. Roth

describes the general process of chemical sputtering in Ref.

48, developing a detailed kinetic model for atomic hydrogen

with pyrolytic graphite. Jacob et al.49 and Schlüter et al.50

extended this model to interactions of atomic nitrogen with a

graphite surface. According to them, chemical sputtering can

be pictured as a multi-step process leading to the formation

of volatile species such as CN, CHN, and C2N2. The

sequence for chemical sputtering can be illustrated with the

following events.50

(i) Incident ions break the C-C bonds within the range

of their penetration depth causing dangling bonds.

The penetration depth was modeled for Ar (20 eV) in

graphite by transport of ions in matter (TRIM) to a

maximum value of 13 Å.

(ii) The passivation of the dangling bonds by atomic

nitrogen that arrives before a recombination of the C

dangling bonds takes place with other elements such

as H and C.

(iii) In consequence of the repetition of (i) and (ii),

volatile CN-species form and desorb.

In summary, the chemical sputter mechanism is based

on the dynamic adsorption and desorption of CxNy/Nx

plasma species. For lowered N2 contents in the sputter gas,

impinging Ar might retard this mechanism by destroying

C-N bonds at the target surface. Therefore, it can be assumed

that a chemical sputter process, to some extent, takes place

at the target surface.

Another apparent feature seen in Figure 2 is the shift for

the onset target current to rise and thus the peak target cur-

rent shifts. Both are observed later in the pulse as the nitro-

gen content is increasing. This behavior can also be

attributed to the events of chemical sputtering at the target.

B. The HiPIMS carbon discharge as a function of the
N2 content in the sputter gas: Time-averaged mass
spectrometry and comparison to the DCMS discharge

Generally, IEDFs recorded for a HiPIMS process con-

tain two main components, which are (i) a low-energy peak,

representing those ions, which lost their initial kinetic energy

due to collisions (thermalization) and (ii) a high-energy tail.

The latter reflects mainly three components: the probability

function of electron impact ionization, the probability func-

tion for collisions to occur between metal ions and inert gas

neutrals, and the energy transmission function of the mass

spectrometer.

A qualitative comparison and closer examination of

IEDFs, acquired during HiPIMS carbon discharges for

different N2 contents in the sputter gas at a total constant

process pressure of 400 mPa is given in this section.

Figures 3(a)–3(f) show IEDFs recorded at Ep of 4 J and

500 Hz of the most abundant species arriving at the substrate.
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The low-energy Cþ peak (cf. inset Figure 3(a)), originating

from fully thermalized ions, shows a minimum energy

around 50% of nitrogen in the sputter gas, which in turn,

indicates a decreased plasma potential33 in this region. In

detail, the energy of the low-energy Cþ peak observed at

�1 eV for a pure Ar discharge, decreases for processes with

�50% of nitrogen in the plasma, and increases again to a

value of �0.7 eV as the discharge is carried out in pure nitro-

gen. The position of this low-energy peak mirrors the plasma

potential, as the orifice of the mass spectrometer was

grounded. However, since the signal of the low-energy Cþ

peak was recorded in time-average mode, it is dominated by

contributions acquired during pulse off times due to low duty

cycles. In other words, the extracted plasma potential is the

time-averaged value over the whole period. Moreover, as can

be observed in Figures 3(a) and 3(e), the IEDFs of Cþ and Nþ

ions are characterized by pronounced high-energy tails. IEDFs

of CNþ, C2Nþ, N2
þ, and Arþ do not exhibit such distinct

high-energy tails, which is partly due to their higher masses,

as well as larger sizes. Another factor for the qualitative dif-

ference in IEDF-shape might be that both the Cþ ions and the

high energy Nþ ions are created by electron impact ionization

and originate from the target as nitrogen reacts with the target

material. In this respect, it may as well be possible that back-

attracted N2
þ dissociates at the target surface.

IEDFs of CNþ move towards higher energies with

increasing nitrogen content in the sputter gas, whereas the

nitrogen content does not seem to influence the appearance

of the C2Nþ IEDFs. For both dimer groups, the compara-

tively high amount of fully thermalized (low energy) ions is

apparent. This can be ascribed to the higher collision proba-

bility of those molecules due to their increased dimensions.

The IEDFs of the working gas ions recorded during

HiPIMS are shown in Figures 3(d)–3(f). Remarkable features

can be seen for Ar IEDFs. Here, the time-averaged measure-

ment for carbon sputtered in pure argon atmosphere (black

line) shows substantial amounts of fully thermalized and

very low energy ions splitting at �0.4 eV and �1.4 eV,

respectively. This split of the low energy ions will be further

discussed in Sec. III C where time-resolved measurements

are taken into account. The low energy Arþ-peak moves

from �0.4 eV, for a discharge in pure argon, towards a maxi-

mum energy of �1.8 eV as soon as nitrogen is introduced

into the sputter chamber (N2 � 14%), but drops again to an

energy of �0.6 eV as the nitrogen content rises further. This

behavior is inconsistent with regards to the target current and

target voltage waveforms and above described Cþ-IEDFs,

since a minimum in peak target current and plasma potential

was found in HiPIMS processes containing �50% of nitro-

gen. Time-resolved data for Arþ ions, presented in Sec. III C,

will consider this matter further. Ar-ions of higher energy

form a shoulder at �6 eV for the pure Ar discharge. This

shoulder moves towards lower energies as the N2 content

increases in the sputter gas, but seem to stagnate at �2.4 eV

for processes containing >50% of nitrogen. As expected, the

quantity of these Arþ ions decreases rather linearly with

FIG. 3. (a)–(f) Time-averaged IEDFs of (a) Cþ, (b) CNþ, (c) C2Nþ, (d) Arþ, (e) Nþ, and (f) N2
þ detected during mass spectrometry for the HiPIMS discharge

of graphite in Ar and Ar/N2 atmosphere. The insets show a magnification of the low-energy region.
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increasing nitrogen content up to 50%. A similar feature,

although at slightly higher energies (�7.6 eV for a process

carried out in pure nitrogen ambient), can also be observed

in IEDFs of Nþ.

Figures 3(e) and 3(f) present IEDFs for N2
þ and Nþ as a

function of the nitrogen content in the sputter gas. As can be

seen, nitrogen ions dominate the discharge as soon as reac-

tive gas is introduced into the sputter chamber. Particularly,

the IEDFs for Nþ show, next to a minor low energy peak

originating from fully thermalized ions, a well-developed

shoulder of high-energy species. As discussed above, the

amount and energy of this portion of Nþ ions may only be

compared to that of Cþ. With increasing nitrogen content in

the sputter gas, the amount of the low-energy Nþ species

decreases, while the amount of higher energetic ions is

increasing. Moreover, the low-energy peak of Nþ ions shifts

to higher energy values for increasing nitrogen contents up

to 66% in the processes, simultaneously the low energy N2
þ

peak is moving towards lower energies.

Figures 4(a)–4(d) give a comparison of IEDFs recorded

for a HiPIMS and a DCMS process. In the case of HiPIMS,

the product of EP and frequency (corresponding to the aver-

age power) was comparable to the DCMS power. In both

modes, the graphite target was sputtered in an atmosphere

containing 50% nitrogen. The quantitative comparison of the

shapes reveals for all the species lower energies in the

DCMS process. Especially for Cþ ions, an increased amount

and mean ion energy is found for the HiPIMS process. More-

over, only IEDFs recorded for Nþ in DCMS mode show a

faint shoulder, which increases in amplitude and energy with

increasing N2 content in the sputter gas and is found at

�2.6 eV for the process in pure N2 (not shown here). This

dependency on the N2 content in the sputter gas is of the same

order as it was found for the HiPIMS process (cf. Figure 3(e)).

It should also be mentioned that IEDFs obtained for Cþ, Arþ,

N2
þ, and CNþ in DCMS mode barely present a correlation to

the N2 content in the sputter gas (not shown here).

In Figure 5, the relative percentage of the detected ion

fluxes (Cþ, Nþ, Arþ, N2
þ, CNþ, and C2Nþ) is presented as a

function of the nitrogen content in the process gas for both

sputter modes. In HiPIMS mode, the plasma chemistry is

dominated by Nþ and Cþ ions as soon as N2 is introduced

into the chamber. Thus, it can be assumed that Nþ and Cþ

ions also play a major role at the target, which explains the

shape of the peak target current in dependence of N2 in the

sputter gas (cf. inset Figure 2), because the overall amount of

Cþ has a minimum between 14% and 66% of nitrogen in

the sputter gas. Additionally, it accounts for the shape of the

recorded IEDFs, as Cþ ions and considerable amounts of the

high energetic portion of Nþ ions originate from the target.

For the reactive HiPIMS process containing >14% of nitro-

gen, the Arþ and the N2
þ flux follow the same trend and

decrease steadily with increasing nitrogen content, whereas

the flux of CNþ increases gradually with the nitrogen con-

tent, but remains low compared to the flux of Cþ and Nþ. As

graphite is sputtered in DCMS mode with 14% N2 in the

sputter gas, N2
þ is found to be the most abundant plasma spe-

cie. Next to N2
þ, Arþ, and Nþ ions are found to a considerable

amount in the plasma containing 14% to 34% of N2. With the

further increase of N2, the signals of N2
þ and Arþ decrease; at

the same time, the Nþ ion flux rises and fully dominates the

plasma composition. C2Nþ ions are hardly observable with

the applied measurement set up. It should be pointed out that

the flux of Cþ ions does not play a major role as graphite is

reactively DC-sputtered. This is in contrast to the HiPIMS

mode once nitrogen is added to the process, Nþ followed by

Cþ are found to be the most abundant plasma species.

C. The carbon discharge as a function of the N2

content in the sputter gas: Time-resolved mass
spectrometry

Figures 6(a)–6(f) present time-resolved data for the

most abundant species found in the HiPIMS plasma where a

FIG. 4. (a)–(d) Comparison of HiPIMS and DCMS IEDFs for (a) Cþ, (b) Arþ, (c) Nþ, and (d) N2
þ from time-averaged mass spectrometry measurements of a

C discharge with 50% N2 in the sputter gas.
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graphite target was sputtered at different Ar/N2-flow ratios.

Here, data obtained during time-resolved mass-spectrometry

measurements were integrated over the entire energy range

of 30 eV. Hence, the count rate is presented as a function of

the delay time, with respect to the pulse onset.

Up to a nitrogen content of 34% in the sputter gas, Arþ

and N2
þ ions are the first to arrive at the spectrometers ori-

fice (Figures 6(a) and 6(b)). Fluxes of both ion species peak

between 20 ls and 40 ls in the course of the pulse. As the

nitrogen content in the sputter gas exceeds 34%, the signals

for Arþ and N2
þ ions decrease in count rate and shift

towards 60 ls and 70 ls, respectively. Interesting is the tem-

poral comparison of the peak target current to the shift in

delay time for the peak ion flux, since both progress in a sim-

ilar manner (cf. Sec. III A) as N2 is introduced to the sputter

process. This is ascribed to the decrease in Ar in the sputter

gas accompanied with the simultaneous change of the target

chemistry. Another noticeable feature is the distinct temporal

evolution of the N2
þ ion flux curve, as a third peak evolves

at �10 ls between 34% and 50% of N2 in the sputter gas and

remains as a discrete peak for higher N2 contents. For Arþ

and N2
þ, a decay of the ion flux is observed through the sec-

ond part of the pulse, but the signals pick up again at the end

of the pulse and reach a new maximum at �200 ls after the

pulse onset. Time-resolved data confirm that this late peak

arises for all gas mixtures from low-energy (fully thermal-

ized) ions. Arþ ions show a peculiar dependency in this post

pulse region, as the maximum ion flux is found for a sputter

process containing 14% N2 in the gas, followed by processes

with 34% and 50% of N2. The above described dependency

helps to understand time-averaged measurements, where the

ions with lower energy and the thermalized ions gave a con-

trary impression as for the plasma potential and the low

energy ion count. These ions arrive at the mass spectrome-

ters orifice just after the pulse ended.

Signals obtained from Cþ and Nþ ions peak between

70 ls and 110 ls after the pulse onset (Figures 6(c) and

6(d)). A delay time of �100 ls corresponds to the beginning

of the transition from HiPIMS to DCMS mode according to

the discussed target current and target voltage waveforms

(cf. Figure 2). For both species, no shift in delay time of the

maximum ion flux is obtained for increased N2 fractions as

described for Arþ and N2
þ ions. Nevertheless, as the N2/Ar

ratio in the working gas rises above 50%, the Cþ ion flux

increases steadily, whereas the Nþ ion flux rises instantly as

N2 is added to the process (see Sec. III B, Figure 5). The Cþ

and Nþ ions exhibit similar IEDFs in time-averaged

measurement mode. Additionally, both IEDFs show a

FIG. 6. (a)–(f). Total ion count rate vs delay time (corresponding to the

onset of the pulse) for different nitrogen contents in the sputter gas. Each

data point represents IEDFs recorded during 20 ms, integrated over the entire

energy range for (a) Arþ, (b) N2
þ, (c) Cþ, (d) Nþ, (e) CNþ, and (f) C2Nþ.

FIG. 5. The relative percentage of the detected ion fluxes in dependence of

the nitrogen content in the process gas for both sputter modes. Solid symbols

represent the ion flux extracted for HiPIMS and open symbols correspond to

the ion fluxes obtained for DCMS.
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comparable temporal evolution in time-resolved measure-

ments. This supports the theory that not only Cþ is originat-

ing from the target but also a large portion of Nþ ions.

CNþ and C2Nþ ions show a maximum count rate at

�110 ls. While the CNþ ion flux is heavily scaling with the

N2 content in the working gas, the C2Nþ ion flux rises first

above the detection limit as N2 exceeds 50% in the sputter

gas. However, the overall count rates for C2Nþ and CNþ

ions are rather low, owing to the comparatively bulky mole-

cule dimensions and thus a higher collision probability in

combination with the large distance between the target sur-

face and the spectrometer’s orifice. Moreover, a shift in

delay time of the maximum ion flux is not observed for these

plasma species as N2 is added to the process. This points

towards the target as the origin of CNþ and C2Nþ, which is

supported by the theory of the chemical sputter process

occurring at the target surface.17,19,23,24

D. DCMS vs. HiPIMS processes; their impact on CNx

film growth and microstructure

Compared to the DCMS discharge, HiPIMS exhibits

most of all an increased amount of higher energy Cþ ions.

Arþ and Nþ, though comparable in abundance, were also

found to be more energetic, which in turn is accompanied by

a significantly decreased amount of thermalized ions in the

HiPIMS process (cf. Figure 4). The higher ion energy, the sig-

nificant differences in plasma composition (cf. Figure 5) and a

likely variation of the ion-to-neutral ratio imply influences on

the growth and microstructure in CNx thin films sputtered by

HiPIMS. In Figure 7, the growth rates (Rd) of comparable

HiPIMS and DCMS processes are presented for different N2

contents in the sputter gas. Additionally, Figure 7 comprises

the Rd for different deposition temperatures (where RT—open

symbols correspond to a deposition at room temperature,

LT—crossed symbols to Ts¼ 110 �C, and HT—filled symbols

to Ts¼ 430 �C). Striking is the high Rd for non-reactive

HiPIMS of graphite at high deposition temperatures. As soon

as N2 (14%) is added to the sputter process, the deposition

rates of all processes become similar. Increasing the N2 con-

tent further results in comparable Rds for both sputter modes,

but growth rates for processes at room, low, and high temper-

atures show a significant difference. At high temperatures and

sputtering in pure N2, the growth rate reaches only 71% of the

growth rate for a comparable process at low temperatures.

Hellgren et al.51 and Neidhardt et al.52 ascribed the lower dep-

osition rates at elevated temperatures in reactive DCMS to

chemical sputtering. Schluter et al.50 considered this depend-

ency to be an indicator for chemical sputtering. The fact that

no significant difference is seen for both modes implies the

occurrence of similar sputter and growth mechanisms. This is

in agreement with conclusions drawn from target current and

target voltage waveforms in combination with time-average

and time-resolved ion mass spectrometry.

Naturally, the deposition rate is connected to the density

of thin films. Neidhardt et al.52 showed considerable varia-

tions in mass density as function of the N2 content in the

sputter gas for thin films deposited at temperatures higher

than 300 �C. This in turn correlated with very the interest-

ing micro-structural evolution of CNx (0< x< 0.23,

TS> 300 �C) films; ranging from a-C to fullerene like to gra-

phitic with increasing N2 content in the sputter gas. Figure 8

shows the corrected deposition rate (areal density deposited

per second) in dependence of the N2 content in the sputter

gas. Here, the deposition rates at a substrate temperature of

430 �C (cf. HT, filled symbols, Figure 7) for HiPIMS and

DCMS were multiplied with the film density, which was

obtained from the film thickness (cross-sectional SEM) and

the atomic areal density (ToF-ERDA). Since both the film

density and the deposition rate were found to change consid-

erably with the nitrogen content in the sputter gas, the pre-

sentation of the corrected Rd is intended to pose a descriptive

tool in order to compare different processes with regards to

the amount of material deposited within a certain time.

Obvious is the reduced corrected Rd for sputtering in pure Ar

atmosphere compared to values obtained for reactive proc-

esses in both sputter modes. This implies a low density for

pure carbon films, which is more prominent for a-C films

sputtered in HiPIMS mode. As soon as N2 is added to the

process gas, the corrected Rd increases rapidly. At 14% N2,

the films produced in both sputter modes were found to pos-

ses comparable peak densities of �2 g cm�3. A further

increase of N2 to 50% results merely in films with slightly

increased corrected Rds, due to decreased film densities of

1.8 g cm�3 for both sputter modes. Films deposited by

HiPIMS in pure N2 exhibit decreased densities of 1.4 g cm�3.

FIG. 7. Deposition rate (Rd) vs N2 content in the sputter gas for HiPIMS

and DCMS; where RT—open symbols correspond to depositions at room

temperature, LT—crossed symbols to 110 �C substrate temperature, and

HT—filled symbols to 430 �C substrate temperature.

FIG. 8. Corrected deposition rate (Rd) vs N2 content in the sputter gas for

films deposited by HiPIMS and DCMS, at a substrate temperature of 430 �C
and different N2 contents in the sputter gas.
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This evolution of the density is in agreement with results pre-

sented by Neidhardt et al.52

Figures 9(a)–9(d) show TEM images and SAED patterns

from C and CNx thin films deposited by HiPIMS, where two

different substrate temperatures and pulse energies as well as

a process pressure of 400 mPa were applied. Figures 9(a)

and 9(b) present the microstructure of an a-C and a CNx thin

film, produced with pure Ar and [N2]¼ 14%, respectively, at

Ts¼ 110 �C. Both films are effectively amorphous, but the

CNx exhibits a slightly textured microstructure, with stand-

ing basal planes, judged by a ring segment of the �3.5 Å

ring in the SAED pattern directed in the substrate plane. The

SAED patterns from CNx thin films exhibit usually three

rings at �1.2 Å, �2 Å, and �3.5 Å.53 Diffuse SAED rings

with a FWHM of 0.1 Å�1-0.2 Å�1 and ring diameters of

�1.2 Å and �2 Å are typical for amorphous carbon allo-

tropes, whereas the appearance of the ring with a diameter of

�3.5 Å corresponds to graphitic short range order in the

microstructures, i.e., in graphitic or FL-carbon materials.40

The evaluation of the SAED pattern in Figure 9(b) revealed

an intensity ratio int(3.5 Å)/int(2 Å) of 0.5, which is the low-

est value for CNx thin films studied here. The weak structur-

ing of the CNx thin film shown in Figure 9(b) can be

ascribed to the low deposition temperature. In fact, deposi-

tion temperatures of >300 �C were defined by Neidhardt

et al. to be one of the key requirements for the evolution of

the fullerene-like short range order in CNx films.23 Thus,

considering a similar film growth by chemical sputtering, it

can be concluded that the low temperature is preventing a

pronounced ordered microstructure. The lower panel, with

Figures 9(c) and 9(d), shows a comparison of CNx films de-

posited at Ts¼ 430 �C with [N2]¼ 14%, applying pulse ener-

gies of 2.1 J and 4.5 J, respectively. HRTEM images obtained

from both films (2.1 J (Figure 9(c)) and 4.5 J (Figure 9(d))

indicate FL structure. Our former studies revealed no signifi-

cant influences of the pulse energy on the microstructure of

CNx thin films. However, the most distinct FL microstructure

was obtained for the CNx film deposited with a pulse energy

of 4.5 J (Figure 9(d)), this can be seen in the image and is indi-

cated by an intensity ratio int(3.5 Å)/int(2 Å)¼ 2.0 extracted

from the SAED pattern. Neidhardt et al. and Hellgren et al. as

well as the presented study showed that the most pronounced

features of fullerene likeness is found for films deposited at

temperatures >300 �C and low fN2/Ar. This in combination

with the presented peak film densities found for 14% of N2 in

the sputter gas at 430 �C substrate temperature during deposi-

tion allows to conclude that FL films possess a very efficient,

dense packing considering the amorphous nature with gra-

phitic short range ordering (cf. Figure 9(d)).

For very thin (thickness< 50 nm) CNx films, plan-view

SAED in combination with TEM studies (not shown here)

revealed, a change in the position of the inner ring to �4 Å,

compared to �3.5 Å reported in previous studies on related

DCMS produced CNx thin films.40,53 The same shift of the

inner ring from �3.5 Å to �4 Å was found for CPx thin films

and related to an increased amount of intercalated P.54 Thus,

we conclude that the shift of the inner ring is due to an

increased amount of intercalated N. This, in turn, can be

attributed to the apparent higher ion energy seen for HiPIMS,

which is likely to cut bonds during fragment growth by

chemical sputtering at the substrate. The higher ion energies

obtained for HiPIMS may result in a strongly interlinked

fullerene-like structure, similar to that of FL-CPx.55

Figures 10(a)–10(d) present TEM images with corre-

sponding SAED pattern of C and CNx films produced by

FIG. 9. (a)–(d) Cross-sectional HRTEM images with corresponding SAED

patterns of C and CNx thin films deposited by HiPIMS: (a) a-C, Ts¼ 110 �C,

(b) CNx, 14% nitrogen in the sputter gas, Ts¼ 110 �C, (c) CNx, 14% nitrogen

in the sputter gas, Ts¼ 430 �C, and a pulse energy (Ep) of 2.1 J, as well as

(d) CNx, 14% nitrogen in the sputter gas, Ts¼ 430 �C, Ep¼ 4.5 J. The labels

in the SAED pattern in panel (d) mark the positions of �1.15 Å and �2.1 Å

diffuse rings. The arrow indicates the brightest segment of the �3.5 Å ring.

The growth direction in the HR images and SAED shows upwards.

FIG. 10. (a)–(d) Cross-sectional HRTEM images with corresponding SAED

pattern of C and CNx thin films deposited by DCMS with equivalent average

power setting as films deposited by HiPIMS (cf. Figure 9 (a), (b), and (d)):

(a) a-C, Ts¼ 110 �C, (b) CNx, 14% nitrogen in the sputter gas, Ts¼ 110 �C,

(c) a-C, Ts¼ 430 �C, and (d) CNx, 14% nitrogen in the sputter gas, Ts¼ 430 �C.

The labels in the SAED pattern in panel (d) mark the position of �1.15 Å and

�2.1 Å diffuse rings. The arrow indicates the brightest segment of the �3.5 Å

ring. The growth direction in the HR images and SAED shows upwards.
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DCMS. Figures 10(a) and 10(c) show films sputtered from a

graphite target in pure Ar at 110 �C and 430 �C, respectively.

The SAED patterns of both a-C films show a slight graphitic

ordering with ring intensity ratios of 0.5. DCMS sputtered

CNx films at temperatures of 110 �C (Figure 10(b)) and

430 �C (Figure 10(d)) were evaluated to ratios of 0.7 and 1.3,

respectively. The bright segment of the �3.5 Å ring implies

a slightly textured graphitic ordering of the CNx film (with

preferred orientation of basal planes perpendicular to the

substrate) seen in Figure 10(d). The comparison of TEM

images and SAED patterns for HiPIMS CNx thin films and

DCMS CNx thin films presented in this study reveals that the

degree of ordering is highest for the HiPIMS CNx thin film

sputtered in nitrogen containing atmosphere at Ts¼ 430 �C.

Thus, it can be concluded that the structure-defining impact of

chemical sputtering during CNx film growth is particularly

effective in the HiPIMS process. This is evident from ion mass

spectrometry, as more CxNy (x, y� 2) ionic species, acting as

structure-defining agents at the substrate, were found for the

HiPIMS mode compared to DCMS (cf. Figure 5). However,

high-energy particles may counteract the evolution of highly

ordered microstructures in films deposited by HiPIMS.

IV. CONCLUSIONS

Reactive DCMS and HiPIMS of graphite in an Ar/N2

atmosphere yield a discharge that contains mainly Cþ, Nþ,

N2
þ, as well as Arþ and to a lower extent CNþ and C2Nþ ions.

The ion species in HiPIMS processes exhibit higher ion ener-

gies and a lower amount of fully thermalized ions compared

to DCMS. With regards to ion energy and amount, Cþ ions

exhibit distinct differences, with two and four orders of

magnitude higher values, respectively, obtained for HiPIMS

processing. Once nitrogen is added to the sputter process,

Nþ-ions dominate the plasma chemistry. This effect is far less

pronounced in the case of HiPIMS as the ion-flux at 50% of

nitrogen in the process gas is composed of 26% Cþ and 47%

Nþ in contrast to the DCMS plasma, which contains 8% of Cþ

and 70% of Nþ at equivalent process settings. The comparison

on the ion-flux shows further a rising amount of CxNy (x, y� 2)

species in the HiPIMS plasma. This in combination with the

conclusions drawn from the evaluation of the target current

confirms that chemical sputtering is active at the substrate and

at target as soon as nitrogen is added to the sputter process.

The most pronounced FL structure is obtained for CNx films

sputtered in HiPIMS mode at 430 �C. Pure carbon thin films as

well as CNx thin films deposited at low substrate temperatures of

110 �C exhibit only slight graphitic short range ordering. In the

case of HiPIMS, the increased amount of pre-formed ionic CxNy

(x, y� 2) species by chemical sputtering at high temperatures

promotes the formation of FL-CNx. The comparatively high

energies detected for Nþ and Cþ ions in the HiPIMS process dis-

turb the FL structure by intercalation of N in the films.
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