185 research outputs found
FRS2α Regulates Erk Levels to Control a Self-Renewal Target Hes1 and Proliferation of FGF-Responsive Neural Stem/Progenitor Cells
Fibroblast growth factor (FGF) is among the most common growth factors used in cultures to maintain self-renewal and proliferative capabilities of a variety of stem cells, including neural stem cells (NSCs). However, the molecular mechanisms underlying the control by FGF have remained elusive. Studies on mutant mice of FGF receptor substrate 2α (FRS2α), a central mediator for FGF signaling, combined with FRS2α knockdown or gain-of-function experiments, allowed us to dissect the role of FGF signaling for the self-renewal and proliferation of NSCs and to provide novel molecular mechanisms for them. We identified Hes1 as a novel self-renewal target of FGF-signaling. Quantitatively different levels of Erk activation mediated by FRS2α may regulate self-renewal of NSCs and proliferation of neural stem/progenitor cells (NSPCs); low levels of Erk activation are sufficient for the former, however, higher levels are required for maximum activity of the latter. Thus, FRS2α fine-tunes the FGF-signaling to control qualitatively different biological activities, self-renewal at least partly through Hes1 versus proliferation of NSPCs. Stem Cells 2010; 28:1661–1673
Creationism in the Netherlands
Recent events indicate that creationists are becoming increasingly active in the Netherlands. This article offers an overview of these events. First, I discuss the introduction of Intelligent Design (ID) creationism into the Dutch public sphere by a renowned physicist, Cees Dekker. Later, Dekker himself shifted towards a more evolution-friendly position, theistic evolution. Second, we will see how Dekker was followed in this shift by Andries Knevel, who is an important figure within the Dutch evangelical broadcasting group, the Evangelische Omroep. His conversion to ID and, consequently, to theistic evolution, brought him into conflict with young-Earth creationists who still strongly identify themselves with the EO. Third, provoked by the ‘dissidence’ of prominent orthodox believers and the celebrations surrounding the Darwin year, young-Earth creationists became very visible. After three decades of relative silence, they started a project to make sure that the Dutch people would hear of the so-called ‘alternatives’ to evolutionary theory.
This article (1) adds to the alarmingly growing number of reports on creationists’ increased activity in Europe; and (2) suggests that ID, in a context different from the United States, did not unite, but rather divided, the Dutch orthodox protestant community
Old and new immunophenotypic markers in multiple myeloma for discrimination of responding and relapsing patients: The importance of "normal" residual plasma cell analysis
Background Multiple myeloma is an incurable disease characterized by proliferation of clonal malignant plasma cells (CPCs), which can be immunophenotypically distinguished from polyclonal plasma cells (PPCs) by multiparameter flow cytometry (MFC). The utility of PPCs analysis in detecting prognostic and predictive information is still a matter of debate. Methods: we tested the ability of 11 MFC markers in detecting differences in the immunophenotype of CPCs and PPCs among patients in various disease stages; we verified if these markers could be associated with disease stage/response to therapy despite the role of clinical parameters. Results: significant changes in the expression of markers occurred both in CPCs and PPCs. CD58 on PPCs of responding patients was downregulated compared with PPC of relapsing group. Fraction of CD200 expressing PCs was lower in control subjects than in PPCs from MGUS and myeloma groups. CD11a levels of expression on both CPCs and PPCs showed an upregulation in newly diagnosed and relapsing patients versus PCs of controls; CD20 was less expressed on control PCs than on MGUS CPCs and PPCs. CD49d revealed to be advantageous in discrimination of PPCs from CPCs. In our multiple regression model, CD19 and CD49d on CPCs, and CD45, CD58 and CD56 on PPCs maintained their association with groups of patients independently of other prognostic variables. Conclusions: we provide a feasible start point to put in order ranges of expression on PPCs in healthy and myeloma subjects; we propose a new approach based on PPC analysis to monitor the stages of the disease
Harmonization of the intracellular cytokine staining assay
Active immunotherapy for cancer is an accepted treatment modality aiming to reinforce the T-cell response to cancer. T-cell reactivity is measured by various assays and used to guide the clinical development of immunotherapeutics. However, data obtained across different institutions may vary substantially making comparative conclusions difficult. The Cancer Immunotherapy Immunoguiding Program organizes proficiency panels to identify key parameters influencing the outcome of commonly used T-cell assays followed by harmonization. Our successes with IFNγ-ELISPOT and peptide HLA multimer analysis have led to the current study on intracellular cytokine staining (ICS). We report the results of three successive panels evaluating this assay. At the beginning, 3 out of 9 participants (33 %) were able to detect >6 out of 8 known virus-specific T-cell responses in peripheral blood of healthy individuals. This increased to 50 % of the laboratories in the second phase. The reported percentages of cytokine-producing T cells by the different laboratories were highly variable with coefficients of variation well over 60 %. Variability could partially be explained by protocol-related differences in background cytokine production leading to sub-optimal signal-to-noise ratios. The large number of protocol variables prohibited identification of prime guidelines to harmonize the assays. In addition, the gating strategy used to identify reactive T cells had a major impact on assay outcome. Subsequent harmonization of the gating strategy considerably reduced the variability within the group of participants. In conclusion, we propose that first basic guidelines should be applied for gating in ICS experiments before harmonizing assay protocol variables
A Novel High-Content Flow Cytometric Method for Assessing the Viability and Damage of Rat Retinal Ganglion Cells
PURPOSE: The aim of the study was to develop a high-content flow cytometric method for assessing the viability and damage of small, medium, and large retinal ganglion cells (RGCs) in N-methyl-D-aspartic acid (NMDA)-injury model. METHODS/RESULTS: Retinal toxicity was induced in rats by intravitreal injection of NMDA and RGCs were retrogradely labeled with Fluoro-Gold (FG). Seven days post-NMDA injection, flatmount and flow cytometric methods were used to evaluate RGCs. In addition, the RGC area diameter (D((a))) obtained from retinal flatmount imaging were plotted versus apparent volume diameter (D((v))) obtained from flow cytometry for the same cumulative cell number (sequentially from small to large RGCs) percentile (Q) to establish their relationship for accurately determining RGC sizes. Good correlation (r = 0.9718) was found between D((a)) and apparent D((v)). Both flatmount and flow cytometric analyses of RGCs showed that 40 mM NMDA significantly reduced the numbers of small and medium RGCs but not large RGCs. Additionally, flow cytometry showed that the geometric means of FG and thy-1 intensities in three types of RGCs decreased to 90.96±2.24% (P<0.05) and 91.78±1.89% (P>0.05) for small, 69.62±2.11% (P<0.01) and 69.07±2.98% (P<0.01) for medium, and 69.68±6.48% (P<0.05) and 69.91±6.23% (P<0.05) for large as compared with the normal RGCs. CONCLUSION: The established flow cytometric method provides high-content analysis for differential evaluation of RGC number and status and should be useful for the evaluation of various models of optic nerve injury and the effects of potential neuroprotective agents
Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina
Background: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. Methodology/Principal Findings: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. Conclusion/Significance: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation o
- …