1,224 research outputs found

    Background independent action for double field theory

    Get PDF
    Double field theory describes a massless subsector of closed string theory with both momentum and winding excitations. The gauge algebra is governed by the Courant bracket in certain subsectors of this double field theory. We construct the associated nonlinear background-independent action that is T-duality invariant and realizes the Courant gauge algebra. The action is the sum of a standard action for gravity, antisymmetric tensor, and dilaton fields written with ordinary derivatives, a similar action for dual fields with dual derivatives, and a mixed term that is needed for gauge invariance.Comment: 45 pages, v2: minor corrections, refs. added, to appear in JHE

    Heterotic type IIA duality with fluxes - towards the complete story

    Full text link
    In this paper we study the heterotic type IIA duality when fluxes are turned on. We show that many of the known fluxes are dual to each other and claim that certain fluxes on the heterotic side require that the type IIA picture is lifted to M or even F-theory compactifications with geometric fluxes.Comment: 31 pages, references adde

    T-duality in the weakly curved background

    Get PDF
    We consider the closed string propagating in the weakly curved background which consists of constant metric and Kalb-Ramond field with infinitesimally small coordinate dependent part. We propose the procedure for constructing the T-dual theory, performing T-duality transformations along coordinates on which the Kalb-Ramond field depends. The obtained theory is defined in the non-geometric double space, described by the Lagrange multiplier yμy_\mu and its TT-dual y~μ\tilde{y}_\mu. We apply the proposed T-duality procedure to the T-dual theory and obtain the initial one. We discuss the standard relations between T-dual theories that the equations of motion and momenta modes of one theory are the Bianchi identities and the winding modes of the other

    Generalized Geometry and M theory

    Full text link
    We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected kinetic term and references adde

    D-Brane Wess-Zumino Terms and U-Duality

    Get PDF
    We construct gauge-invariant and U-duality covariant expressions for Wess-Zumino terms corresponding to general Dp-branes (for any p<D) in arbitrary 2<D<11 dimensions. A distinguishing feature of these Wess-Zumino terms is that they contain twice as many scalars as the 10-D compactified dimensions, in line with doubled geometry. We find that for D<10 the charges of the higher-dimensional branes can all be expressed as products of the 0-brane charges, which include the D0-brane and the NS-NS 0-brane charges. We give the general expressions for these charges and show how they determine the non-trivial conjugacy class to which some of the higher-dimensional D-branes belong.Comment: 42 pages. Typos corrected, an error in table 6 corrected, comments in the conclusions adde

    Open String Creation by S-Branes

    Get PDF
    An sp-brane can be viewed as the creation and decay of an unstable D(p+1)-brane. It is argued that the decaying half of an sp-brane can be described by a variant of boundary Liouville theory. The pair creation of open strings by a decaying s-brane is studied in the minisuperspace approximation to the Liouville theory. In this approximation a Hagedorn-like divergence is found in the pair creation rate, suggesting the s-brane energy is rapidly transferred into closed string radiation.Comment: Talk presented at the Hangzhou String 2002 Conference, August 12-1

    Branes at conical singularities and holography

    Full text link
    For supergavrity solutions which are the product of an anti-de Sitter space with an Einstein space X, we study the relation between the amount of supersymmetry preserved and the geometry of X. Depending on the dimension and the amount of supersymmetry, the following geometries for X are possible, in addition to the maximally supersymmetric spherical geometry: Einstein-Sasaki in dimension 2k+1, 3-Sasaki in dimension 4k+3, 7-dimensional manifolds of weak G_2 holonomy and 6-dimensional nearly Kaehler manifolds. Many new examples of such manifolds are presented which are not homogeneous and have escaped earlier classification efforts. String or M theory in these vacua are conjectured to be dual to superconformal field theories. The brane solutions interpolating between these anti-de Sitter near-horizon geometries and the product of Minkowski space with a cone over X lead to an interpretation of the dual superconformal field theory as the world-volume theory for branes at a conical singularity (cone branes). We propose a description of those field theories whose associated cones are obtained by (hyper-)Kaehler quotients.Comment: 38 pages (published version

    2d Gauge Theories and Generalized Geometry

    Get PDF
    We show that in the context of two-dimensional sigma models minimal coupling of an ordinary rigid symmetry Lie algebra g\mathfrak{g} leads naturally to the appearance of the "generalized tangent bundle" TMTMTM\mathbb{T}M \equiv TM \oplus T^*M by means of composite fields. Gauge transformations of the composite fields follow the Courant bracket, closing upon the choice of a Dirac structure DTMD \subset \mathbb{T}M (or, more generally, the choide of a "small Dirac-Rinehart sheaf" D\cal{D}), in which the fields as well as the symmetry parameters are to take values. In these new variables, the gauge theory takes the form of a (non-topological) Dirac sigma model, which is applicable in a more general context and proves to be universal in two space-time dimensions: A gauging of g\mathfrak{g} of a standard sigma model with Wess-Zumino term exists, \emph{iff} there is a prolongation of the rigid symmetry to a Lie algebroid morphism from the action Lie algebroid M×gMM \times \mathfrak{g}\to M into DMD\to M (or the algebraic analogue of the morphism in the case of D\cal{D}). The gauged sigma model results from a pullback by this morphism from the Dirac sigma model, which proves to be universal in two-spacetime dimensions in this sense.Comment: 22 pages, 2 figures; To appear in Journal of High Energy Physic

    U-dual fluxes and Generalized Geometry

    Get PDF
    We perform a systematic analysis of generic string flux compactifications, making use of Exceptional Generalized Geometry (EGG) as an organizing principle. In particular, we establish the precise map between fluxes, gaugings of maximal 4d supergravity and EGG, identifying the complete set of gaugings that admit an uplift to 10d heterotic or type IIB supegravity backgrounds. Our results reveal a rich structure, involving new deformations of 10d supergravity backgrounds, such as the RR counterparts of the β\beta-deformation. These new deformations are expected to provide the natural extension of the β\beta-deformation to full-fledged F-theory backgrounds. Our analysis also provides some clues on the 10d origin of some of the particularly less understood gaugings of 4d supergravity. Finally, we derive the explicit expression for the effective superpotential in arbitrary N = 1 heterotic or type IIB orientifold compactifications, for all the allowed fluxes.Comment: 58 pages, 6 table
    corecore