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1 Introduction

T-duality is a distinctive symmetry of String Theory, in the sense that stringy aspects

come into play. In its simplest form it identifies a theory compactified on a circle of a given

radius with a theory compactified on a circle of inverse radius and exchanges compact

momenta and winding modes, which simply do not exist in a field theory of particles.

When compactification on a more general background with d isometries is considered, T-

duality action is enhanced to an O(d, d,Z) group that, among other features, mixes the
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metric modes with the antisymmetric NSNS B2 field components. In a 2d sigma model

approach, Buscher rules [1, 2] indicate the precise way in which target space fields transform

under T-duality, highlighting the fact that different backgrounds lead to the same CFT.

When fluxes are turned on [3, 4], the situation becomes richer and more intricate. A

clear illustration is provided by a torus compactification in the presence of a flux of the

NSNS 3-formH3 = dB2. It has been suggested that, taking T-duality symmetry as a funda-

mental symmetry of String Theory would lead to include new “fluxes”, following the rules

Hmnp
Tm←→ ωm

np
Tn←→ Qmn

p
Tp←→ Rmnp . (1.1)

where Tm denotes a T-duality transformation performed along an internal direction m [5–

7]. These rules manifest, for instance, by comparing 4d effective superpotentials derived

from orientifold compactifications of the type IIA and IIB 10d supergravity actions. Com-

ponents in (1.1) are related to the various coefficients of effective superpotential couplings

in the dimensionally reduced theory. Since the corresponding type IIA and IIB string the-

ories are supposed to be connected by mirror symmetry, these new fluxes must be included

in order for the superpotentials to match.

An obvious question arising at this stage concerns the higher dimensional origin of these

new fluxes. The first transformation in (1.1) is well understood from Buscher rules. If a T-

duality transformation is performed along the isometry direction m (B2 being independent

of this direction), we end up with a background with no H3 flux, corresponding to a

compactification of 10d supergravity on a different manifold, referred to as twisted torus.

This is characterized by the first Chern class of the spin bundle, given by ωm
np.

By performing a new duality, let us say along n, a new 10d supergravity background

is obtained,1 which can be locally characterized by the tensor Qmn
p = ∂pβ

mn. The new

(β-deformed) background, however, does not define a global manifold in the usual sense

of Riemannian geometry. In order to link such solutions in different intersecting coordi-

nate patches, local solutions can be connected by the usual geometric transition functions

involving diffeomorphisms and gauge transformations. However, after a global transforma-

tion solutions are connected only if T-duality transformations are also allowed for as part

of the transition functions. For that reason Qmn
p is also called a non-geometric flux.

The last T-duality transformation in eq. (1.1) is more obscure. In fact, it has been

conjectured [5] from the 4d effective action viewpoint that if a T-duality transformation

along a direction p is performed in a background with Qmn
p fluxes, we would arrive to a

“truly non-geometric” flux Rmnp for which not even a local 10d supergravity description

is available. In this sense, the resulting 4d effective supergravity should not be thought of

as a dimensional reduction of a 10d effective supergravity background, but as a 4d theory

that incorporates information of the full string theory.

From the above chain of T-dualities a “stringy” generalization of the concept of Rie-

mannian geometry seems to emerge, on which symmetries of the B2 field are taken now on

1Strictly speaking, the usual derivation of Buscher rules is actually not allowed in these cases since the

isometry is not globally well defined. However, following these rules even in these “obstructed” cases seems

to be meaningful. For instance, to some of these solutions an interpretation in terms of asymmetric orbifolds

can be given [8] (see also [9]).
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equal footing than diffeomorphisms. Thus, in a series of papers starting from [10, 11], the

concept of Generalized Geometry [12–15] (see also [16] for an introduction to the topic)

was proposed as a natural framework to describe string compactifications with fluxes. In

Generalized Geometry the full T-duality group O(6, 6) (O(d, d) for compactification on d

dimensions) is the structure group of a generalized bundle built up from the tangent and

cotangent bundles of the six (d) dimensional manifold. Namely, vectors in this generalized

bundle are built up from vectors and one-forms of the original one. The generalized metric

combines the original metric and the B2 field. Patching in overlapping regions requires,

besides diffeomorphisms, an O(6, 6) action involving, in particular, the B2 field.2

Hence, Generalized Geometry is particularly powerful in dealing with general 4dN = 2

and N = 1 compactifications. The existence of a single nowhere vanishing spinor requires

the local O(6, 6) structure to be reduced to a global SU(3) structure, characterized in terms

of a globally SU(3) invariant Kähler (1,1)-form J and a holomorphic 3-form Ω. The 10d

supergravity equations of motion can be then recast in terms of F-term and D-term den-

sities depending on J and Ω, which after Kaluza-Klein reduction and integration over the

compact space give rise to the F-terms and D-terms of the effective 4d gauged supergravity

theory [22–24].

The above picture, however, is far from being complete. By invoking other duality

transformations of String Theory, like IIB S-duality, M-theory or heterotic/type I S-duality

extra fluxes are suggested [7]. Again, such new fluxes can be inferred by matching couplings

in 4d effective superpotentials. Similarly, when dealing with general gauged supergravity

theories (see [25] for a review) gauge symmetries and structure constants can be accounted

for in a string theory framework only if these new fluxes, associated to obstructed dualities,

are incorporated. In this regard, an extension of the framework of Generalized Geometry

is called for.

The natural generalization appears to be Exceptional (or Extended) Generalized Ge-

ometry (EGG) [26, 27]. In EGG the structure group of the generalized bundle is now

the full U-duality group, E7, so that symmetries of the RR fields are also naturally in-

corporated. The effect of the orientifold projection on the untwisted modes can be then

understood from the breaking of the local E7 structure to some O(6, 6)× SL(2) subgroup.

The main aim of this paper is to use the tools of EGG as an organizing principle for

generic string flux compactifications. In the first part of the paper we focus on aspects

which are directly related to the local E7 structure of the compactification. In particu-

lar, we perform a complete mapping between fluxes, gaugings of 4d gauged supergravity

and EGG. This allows for a systematic determination of all the gaugings of 4d gauged

supergravity that admit an uplift to backgrounds of 10d supergravity.3 These are sum-

marized in eqs. (4.14)–(4.18) of section 4. Apart from already known deformations, such

as backgrounds for the RR and NSNS field-strengths of 10d supergravity, metric fluxes

or β-deformed backgrounds, our analysis also reveals new deformations related to the RR

2It is worth noticing that, in this description, fields do depend on six dimensional coordinates of the

original compactification space. A more ambitious program points towards a geometric description where

fields depend on coordinates on a “doubled torus” [17–21] in twelve dimensional space.
3Related partial results can be found in [28–34].
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counterparts of the β-deformation. These provide the natural extension of the latter to

full-fledged F-theory backgrounds (see also [33]). Moreover, our analysis also sheds light

on the 10d origin of some of the particularly less well understood gaugings of 4d N = 4

supergravity, such as the ones transforming in the vector representation of O(6, 6) [35] (see

also [34, 36, 37] for related work).

In the second part of the paper then we consider aspects related to the global SU(3)

structure of N = 1 compactifications. More precisely, making use of the tools of EGG,

we write explicitly the effective superpotential for all the U-dual fluxes allowed in general

N = 1 heterotic or type IIB orientifold compactifications.

A more detailed outline of the paper is as follows. In section 2 we introduce the

basic concepts of Generalized Geometry. In particular we discuss the action of different

generators of O(6, 6) structure group in connection with diffeomorphisms, B2 gauge trans-

formations and the extra β transformation, associated to non globally defined geometries.

The interpretation of NSNS field strength fluxes associated to such transformations and

how they combine to fulfill an O(d, d) representation is also presented. In section 3 we

address the inclusion of RR fields into geometry, defining EGG. The structure group is

thus enlarged to the full E7 U-duality group and the generalized tangent space becomes 56

dimensional. U-dual field strengths are discussed in section 4. In section 5 we consider the

simplest compactifications, that is toroidal compactifications, in the presence of general

dual fluxes. We discuss the algebra and global constraints that U-dual fluxes must satisfy,

and derive the flux induced effective superpotential in these compactifications. The relation

with 4d N = 8 and N = 4 gauged supergravity is also discussed in that section. Section 6

is devoted to the formulation of N = 1 backgrounds in EGG and to the construction

of N = 1 untwisted sector superpotentials for general SU(3) structure compactifications.

Section 7 provides some final comments. Some notation and useful results related to the

E7 algebra are summarized in the appendices.

2 Generalized Geometry

2.1 O(d, d) structure

In Generalized Geometry [12–15], the T-duality group O(d, d) is the structure group of a

generalized bundle constructed by combining the tangent TM and cotangent T ∗M bundles

of a d-dimensional manifold M . A generalized metric on this generalized bundle encodes

information about the metric and the B2 field of the manifold. Matching of overlapping

patches is achieved by allowing transformations involving the B2 field besides the usual dif-

feomorphisms. In that way the B2 field is incorporated to the geometry of the generalized

bundle.

At the intersection of two patches Uα and Uβ, the generalized vectors X = x+ξ (where

x is a vector and ξ a one-form), are identified as follows

xα + ξα = aαβxβ + (a−T
αβ ξβ − ιx′

β
bαβ) , (2.1)

where a ∈ GL(d,R) (and a−T ≡ (a−1)T ) is a conventional diffeomorphism, bαβ is a two-

form and ιx′
β

means a contraction along x′β ≡ aαβxβ. This patching corresponds to the
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following transformation h ∈ O(d, d)

Xα =

(

xα

ξα

)

=

(

I 0

bαβ I

)(

aαβ 0

0 a−T
αβ

)(

xβ

ξβ

)

(2.2)

≡ eB

(

aαβ 0

0 a−T
αβ

)(

xβ

ξβ

)

= hαβXβ

where B =

(

0 0

b2 0

)

is the O(d, d) generator corresponding to an Abelian subgroup, GB.

The presence of the 2-form b2 in the patching implies that the generalized tangent

bundle is not just the sum TM ⊕ T ∗M but is an extension of the tangent bundle by the

cotangent one

0 −→ T ∗M −→ E
π−→ TM −→ 0 , (2.3)

where bαβ describes how T ∗M is fibered over TM . b2 is required to be locally exact, i.e.

bαβ = dΛαβ and (in an analogous way as one patches a U(1) bundle) the local 1-forms Λαβ

should satisfy the cocycle condition

Λαβ + Λβγ + Λγα = gαβγdgαβγ (2.4)

on triple intersections Uα ∩ Uβ ∩ Uγ , where gαβγ = eiθ ∈ U(1). The gauge parameters Λαβ

allow to define a local 2-form gauge field Bα whose patching is

Bα = Bβ + dΛαβ , (2.5)

and whose field strength H3 = dB2 determines the quantized global curvature of the gerbe.

Diffeomorphisms and b-transforms in (2.2) form a subgroup of O(d, d) that is a semi-

direct product Ggeom = GB ⋊GL(d). Specializing to the case d = 6, this subgroup has 51

generators (36 generate GL(6) and 15 make up GB). As we will see in section 3, they form

a parabolic subgroup of O(6, 6). The remaining 15 generators of O(6, 6) define another

Abelian subgroup

eβ2 =

(

I β2

0 I

)

, (2.6)

characterized by a bi-vector β2. The “β-transform” action on a generalized vector is

X = x+ ξ 7→ (x+βxξ)+ ξ (in components, this is xa + ξa 7→ (xa +βabξb)+ ξa). One could

a priori allow for patchings involving these transformations as well. This is perfectly fine

as long as β2 is a globally defined bi-vector. If that is not the case, there is no gauge trans-

formation like (2.5) that allows to define it patchwise. Roughly speaking, this is because

the derivative in (2.5) has an index down, and even when combined with a vector it cannot

define a bi-vector. This is related to the fact that the manifold is still d-dimensional, even

if we have defined an extended 2d-dimensional tangent bundle on it. Hence, whenever β2 is

not globally well-defined, there is no “gerbe-like” construction such as that outlined above

for B2. It is therefore the derivative operator which breaks the O(d, d) symmetry to the
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geometric subgroup. The derivative defines a bracket, called the Courant bracket [12–15],

which is the extension of the Lie bracket to the generalized tangent bundle, and encodes

the differential properties of the bundle. Such bracket is required to be globally defined.

For patchings of the form (2.1), this constrains b2 to be locally exact, while for β2 there is

no analogous condition.

The 36-dimensional space of metric and B2 field parameterize the coset O(6,6)
O(6)×O(6) , or

in other words g and B2 combine to define an O(6)×O(6) structure on E. This structure

can also be defined by the splitting of the generalized tangent bundle into two orthogonal

6-dimensional sub-bundles E = C+ ⊕C− such that the natural O(6, 6)-invariant metric

η =

(

0 I

I 0

)

(2.7)

decomposes into a positive-definite metric on C+ and a negative-definite metric on C−.

The sub-group of O(6, 6) that preserves each metric separately is O(6) × O(6). One can

now define a positive definite generalized metric

H = η|C+
− η|C−

. (2.8)

A generic element of C+ or C− cannot be purely a vector or a one-form, since these

are null with respect to η. We can therefore write X+ ∈ C+ as x +M x for some matrix

M . Taking M = B2 + g, the patching condition (2.1) implies gα = gβ, while B2 is patched

according to (2.5). Orthogonality between C+ and C− implies that an element X− ∈ C−

can be written as X− = x+(B2−g)x. When we write a generic element X = x+ ξ ∈ E as

X = X+ +X−, with X± = x+(B2±g)x we find that the generalized metric takes the form

H =

(

g −B2g
−1B2 B2g

−1

−g−1B2 g−1

)

. (2.9)

and parameterizes the space of scalar fields of the resulting 4d effective supergravity. The

generalized metric can be acted by O(6, 6) transformations. The effect of diffeomorphisms

is changing the metric and B2 field accordingly (namely (g,B2)→ aT (g,B2)a), while that

of b-transformations is to shift B2 → B2− b2. One can therefore think about a background

with a given B2 field B as the b2-transform with b = −B of a background with no B2 field.

A β-transformation leads to a more complicated action so that it does not seem pos-

sible to tell apart the new g and the new B2. However, it is always allowed to perform an

O(6)×O(6) transformation in the stabilizer of g+B2 (i.e., a transformation that does not

change the metric and B2 field) such that the β-transform rotates into a diffeomorphism

and a b-transform. In other words, given a metric and B2 field at a point on the mani-

fold, the full O(6,6)
O(6)×O(6) orbit can be reached by acting only with the geometric subgroup of

O(6, 6) that implies that β-transforms can be locally “gauged away”. We will come back

to this point in the next section.

The transformations b2 and β2 are related by T-duality. In fact, there is another

basis for O(d, d) given by diffeomorphisms, b-transforms and T-dualities along any two
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directions on the tangent space. A T-duality along the first two basis vectors is realized

by the following O(6, 6) transformation

T12 =















0 0 I2 0

0 I4 0 0

I2 0 0 0

0 0 0 I4















, (2.10)

where I2,4 are the 2× 2 and 4× 4 identity matrices. Hence, T-duality transforms each fun-

damental O(6, 6) form XA = (ξf , ξb; v
f , vb) into (vf , ξb; ξf , v

b; ), where f and b subscripts

indicate fiber and base, respectively. It is not hard to check that the action of T-duality

along a fiber f on a generic element (split among its base and fiber components) in the Lie

algebra o(d, d) is

AA
B =















af
f a

f
b β

ff βfb

ab
f ab

b β
bf βbb

bff bfb âf
f âf

b

bbf bbb âb
f âb

b















−→ T T
f ATf =















âf
f bfb bff âf

b

βbf ab
b a

b
f βbb

βff af
b a

f
f β

fb

âb
f bbb bbf âb

b















≡

Ã =















ãf
f ã

f
b β̃

ff β̃fb

ãb
f ãb

b β̃
bf β̃bb

b̃ff b̃fb
ˆ̃af

f ˆ̃af
b

b̃bf b̃bb ˆ̃ab
f ˆ̃ab

b















. (2.11)

Here the index A = 1, . . . , 2d is split into d indices up and d indices down, and each of them

is further split into fiber and base indices. We have also defined â ≡ −aT and b2 and β2 are

antisymmetric, i.e. bfb = −bbf , βfb = −βbf . We see that the effect of T-duality is, roughly

speaking, to raise and lower f -indices and move the block to the corresponding new place

according to the structure of the indices. Hence, transformations purely on the base are not

touched by T-duality. A fiber-base (base-fiber) diffeomorphism is exchanged with a fiber-

base (base-fiber) b2 (β2)-field, while b2 and β2 purely along the fiber are interchanged. A

β-transform with one or two legs along the fiber can therefore be generated by T-dualizing

a diffeomorphism or a b2 field with respectively one and two legs along the fiber.

2.2 T-dual field strengths

Analogous to the local definition of H3, we can also introduce some field strengths for all

the other O(d, d) transformations,4

Hmnp = ∂[mbnp] , ωp
mn = ∂[man]

p , Qnp
m = ∂mβ

np . (2.12)

There are 20 components of H3, while ω and Q have 90 components each. This gives a

total of 200 components. The smallest O(6, 6) representation containing 200 elements is

4Note that these are all local definitions. Global aspects will be mostly discussed in sections 5 and 6.
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the 220, which consists of 3-forms FABC on E. The O(6, 6) index A of the fundamental

representation can be split into six indices m down and six indices up (i.e. a form and

a vectorial index). To fill out the 220 representation an object with three indices up is

missing. Such “locally non-geometric” flux, needed to restore T-duality covariance of the

4d low energy action, has been termed R-flux [5]. It is the candidate T-dual of Hmnp along

m,n and p (though such T-duality à la Buscher [1, 2] is forbidden since in order to get a flux

Hmnp from Bnp, the latter should depend on the coordinate xm, which is therefore not an

isometry). From the point of view of representations of O(d, d), we can see that the O(6, 6)

transformation corresponding to three T-dualities alongmnp acting on the element Hmnp of

the 220 representation gives indeed another element with three indices up. This generates

the chain in (1.1). As for the local non-geometricity, it can be easily appreciated that a flux

Rmnp cannot be the derivative of an O(6, 6) transformation since the derivative has an index

down. A tri-vector would be generated if we introduced a derivative with an index up, or

in other words, if we doubled the coordinates by adding dual coordinates. This is the spirit

of the double torus construction of [17–21]. Even though we will stick to a six-dimensional

manifold, from a purely group-theoretic point of view we shall introduce a “derivative up”

∂m, T-dual to the standard derivative ∂m, such that it combines with the latter to form a

12-dimensional 1-form ∂A. The 220 representation of the fluxes is therefore obtained by

FABC = ∂[AABC] . (2.13)

where ABC = ηBDA
D

C and AD
C is a generic o(6, 6) element as introduced in (2.11).

Out of the 220 fluxes in (2.13), half of them (H3 and ω) are geometric, i.e. are (stan-

dard) derivatives of elements in Ggeom. The other 110 are divided into 90 “locally geomet-

ric” fluxes Q and 20 “locally non-geometric” fluxes R. The locally geometric fluxes can be

built using standard derivatives, but acting on elements of O(d, d) which are not in Ggeom.

They are locally geometric since, as we argued in the previous section, non-geometric el-

ements of O(d, d) can be locally gauged away by O(d) × O(d) transformations without

changing the metric and the B2 field. However, the O(d) × O(d) transformation needed

to rotate the non-geometric element into a geometric one will not be single-valued if the

non-geometric element is not globally well defined.5 On the contrary, locally non-geometric

fluxes require a non-standard derivative, and therefore cannot be the field strengths of any

O(d, d) gauge field.

3 Exceptional Generalized Geometry and U-dual gauge fields

Following [39], in this section we incorporate also the RR fields to the geometry, similarly

to what we did for B2 in the previous section. With that aim we extend the structure

group of the generalized tangent bundle to E7.

3.1 The 56 representation of the gauge parameters

In order to geometrize the RR fields at the same time as the B2 field, one needs to ex-

tend the generalized tangent bundle to one whose structure group is the full U-duality

5Examples of this are given in [38].
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group E7. The 12-dimensional generalized tangent space hence should get extended to a

56-dimensional one [26, 27]. The fundamental 56 representation of E7 decomposes under

O(6, 6) × SL(2,R) ⊂ E7 as

56 = (12,2) + (32’,1) ,

λ =
(

λAi, λ−
)

.
(3.1)

where i = 1, 2, and a minus denotes a sum of odd forms on the internal space.6 The

56 degrees of freedom can be accounted for by gauge parameters. Six come from gauge

transformations of the B2 field, given by one-forms, and six from vectors pointing in the di-

rections of the diffeomorphisms. Those build the fundamental 12 representation of O(6, 6).

We have to add to them gauge transformations of the RR fields, given by odd forms in the

32’ representation (in this paper we will concentrate on type IIB, where the RR potentials

are even, and their gauge transformations are given by odd forms). However, in order to

fill out the 56 representation (or in other words, to have a closed set under U-duality),

we need another 12 parameters. These are the magnetic duals in the NS sector, namely

a 5-form, corresponding to gauge transformations of B6 (the dual of B2), and the duals

of the diffeomorphism vectors, given by elements of T ∗M ⊗ Λ6T ∗M (whose corresponding

gauge charges are the Kaluza-Klein monopoles). The 56-dimensional exceptional general-

ized tangent space is therefore given by

E = TM ⊕ T ∗M ⊕ Λ5T ∗M ⊕
(

T ∗M ⊗ Λ6T ∗M
)

⊕ ΛoddT ∗M . (3.2)

The embedding of GL(6) ⊂ O(6, 6) × SL(2,R) picks out a vector that breaks the 2 of

SL(2,R) into 1 + 1 such that in one direction that we will call vi, the 12 representation

of O(6, 6) is built out of a vector and a 1-form, while in the other (called ωi) it contains a

5-form and a 1-form tensor a volume form. This is the result of an uneven assignment of

GL(6) weights (see appendix A of [39] for details). Without loss of generality one can take

vi = (1, 0) , ωi = (0, 1) . (3.3)

Note that vω ≡ ǫijvjωi = 1.

There are 4d gauge fields associated to each of the above gauge parameters. These

come from 10d gauge fields with one space-time index. In terms of the notation in eq. (3.1),

the 4d vectors are

λµ =
(

(am
µ + bmµ)vi + (b̃mµ + k̃mµ)ωi, c̃−µ

)

, (3.4)

where b̃mµ ≡ 1
5!ǫ

mnopqrbnopqrµ (i.e. it is the Hodge dual of the 6-form b6 with one external

and five internal indices), k̃mµ ≡ kmµ
123456 is the magnetic dual of the vector aµ associated

with diffeomorphisms, and c̃−µ ≡
∑

p=2n+1
1
p!ǫ

i1...i6cµi1...ip are a sum of odd multi-vectors

corresponding to the Hodge dual of the RR potentials with one space-time index.

6We are choosing conventions where the 56 contains the 32′ representation of O(6, 6) (made out of odd

forms), while the 32 (even forms) appears in the 133 representation. This is the appropriate choice for

type IIB compactifications, while in type IIA the opposite choice is required.
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3.2 The 133 representation of the gauge fields

The analogue of the O(6, 6) action on the generalized tangent space is an E7 action on E.

The adjoint 133 representation of E7 decomposes under O(6, 6) × SL(2,R) as

133 = (66,1) + (1,3) + (32,2) ,

A =
(

AA
B, A

i
j , A

+i
)

.
(3.5)

Under the GL(6) ⊂ O(6, 6) × SL(2,R) embedding, these further decompose into [39]

A0 = (TM ⊗ T ∗M)⊕ Λ2T ∗M ⊕ Λ2TM⊕
⊕ R⊕ Λ6T ∗M ⊕ Λ6TM ⊕ ΛevenT ∗M ⊕ ΛevenTM .

(3.6)

We recognize the first line to be the adjoint 66 representation of O(6, 6) (diffeomorphisms,

b-transforms and β-transforms). The p-form elements on the second line correspond to b6
and c+ transformations, which shift the value of B6 and C+. Diffeomorphisms, b2, b6 and

c+ transformations form the geometric subgroup Ggeom ⊂ E7 used to patch the exceptional

generalized tangent space (see more details in [27, 39]). Using the notation in (3.5) we

embed the generators of the geometric subgroup of E7 in the following way [39]

Ageom =

((

a 0

b2 −aT

)

, b6 v
ivj , c

+vi

)

(3.7)

where c+ = c0 + c2 + c4 + c6 and vi = ǫijv
j .

As in the generalized geometric case, the geometric subgroup is a semi-direct product

Ggeom = GA ⋊GL(d), where GA is the nilpotent subgroup corresponding to the shift sym-

metries Ap → Ap + ap for the p-form gauge fields B2, B6 and C+. The remaining elements

of E7 play an analogous role to the β-transformation in the O(6, 6) case: they can locally

be gauged away by SU(8) ⊂ E7 transformations that do not change the metric, dilaton, B

and C-fields (which together define an SU(8) structure), but in the case where they are not

globally well defined, they might carry some topologically non-trivial flux that signals a non-

geometric background. Besides the bi-vector β2, the non-geometric gauge fields are a sum of

even vectors that we will call γ+ (which are SL(2,R)-dual to the RR gauge fields), a scalar

ĉ0, and a six-vector β6 that together with b6 form the triplet of SL(2,R). The full 133 repre-

sentation arranges in the following way with respect to the O(6, 6)×SL(2,R) decomposition

A =

((

a β2

b2 −aT

)

, b6 v
ivj + ĉ0(v

iωj + ωivj) + β6 ω
iωj, c

+vi + γ+ωi

)

. (3.8)

3.3 From E7 to O(6, 6) × SL(2,R)

To make contact between E7 and Generalized Geometry, we have decomposed the fun-

damental and adjoint representations of E7 into representations of O(6, 6) × SL(2,R). In

this decomposition, the O(6, 6) subgroup is the one of Generalized Geometry, whereas

the SL(2,R) factor corresponds to fractional linear transformations of the complex axion-

dilaton which appears in heterotic string compactifications,

SH = B6 + ie−2φvol6 (3.9)
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The embedding of O(6, 6) × SL(2,R) into E7 is, however, not unique. For instance, while

T-duality (in the adjoint of O(6, 6)) acts straightforwardly on eq. (3.8), type IIB S-duality

seems more complicated. The latter should exchange b2 and c2, which are contained in

different representations of O(6, 6) × SL(2,R). This implies that S-duality is not in the

SL(2,R) piece, but it is a combination of generators in both SL(2,R) and O(6, 6).

We can therefore select another decomposition O(6, 6)×SL(2,R)|B ⊂ E7 for which the

SL(2,R) subgroup is the one that contains type IIB S-duality, which acts on

SB = C0 + ie−φ (3.10)

by fractional linear transformations. In this basis, eq. (3.8) is reexpressed as,

A|B =

((

aT γ4

c4 −a

)

, c0 ṽ
iṽj + ĉ0(ṽ

iω̃j + ω̃iṽj) + γ0 ω̃
iω̃j,

(β2 + γ6 + c2 + b6) ṽ
i + (γ2 + β6 + b2 + c6) ω̃

i

)

(3.11)

Note that type IIB S-duality now corresponds to the exchange ω̃ → ṽ, ṽ → −ω̃. Thus,

from eq. (3.11) we observe that γ2 is the S-dual of β2 (which is itself T-dual of b2), while

β6 and γ6 are also related by S-duality.

In what follows, we will refer to the above two decompositions as O(6, 6)× SL(2,R)|H
and O(6, 6) × SL(2,R)|B . To relate fields in one decomposition to fields in the other, it

is useful to assign every gauge parameter in the 56 representation and every gauge field

in the 133 a weight vector, in the same spirit as e.g. [30]. A convenient way to write the

E7 roots is as vectors lying in a seven dimensional subspace of an eight dimensional vector

space orthogonal to e7 + e8, where ei, i = 1, . . . , 8, are orthonormal basis vectors. The full

set of weights for the E7 representations we will deal with are given in appendix A. We can

choose the SL(2,R) vectors vi and ωi such that the roots corresponding to c+ are positive

in the conventions of appendix A.1. This requires

vi = −e7 + e8 , ωi = e7 − e8 . (3.12)

Given that choice, the assignment of weights is unique in order to reproduce the algebra

satisfied by (3.8), given in eq. (A.4). We summarize the weight of each gauge field in table 1

below, where we have made use of the shorthand notation ± ≡ ±1
2 .

Weight vectors for the O(6, 6)×SL(2,R)|H and O(6, 6)×SL(2,R)|B decompositions of

E7 are related by a change of basis. Given the assignment of roots in theO(6, 6)×SL(2,R)|H
basis, in order to find such change, it is enough to require that b2 and c2 form a doublet

of S-duality in the new basis, and that diffeomorphisms are mapped to themselves. For

convenience, we take the case on which a→ aT . Calling ẽa, a = 1, . . . , 8, the orthonormal

basis vectors in the type IIB basis, we get the following dictionary between the two bases

ei =
1

4

6
∑

j=1

ẽj +
1

4
(ẽ7 − ẽ8)− ẽi i, j = 1, . . . , 6 (3.13)

e7 − e8 =
1

2
(ẽ7 − ẽ8)−

1

2

6
∑

j=1

ẽj . (3.14)
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field O(6, 6) × SL(2,R)|H O(6, 6) × SL(2,R)|B (−1)FL ΩP

b123456 (0, 0, 0, 0, 0, 0;−1, 1) (+,+,+,+,+,+;−,+) + −
b12 (1, 1, 0, 0, 0, 0; 0, 0) (−,−,+,+,+,+;+,−) + −
a1

2 (−1, 1, 0, 0, 0, 0; 0, 0) (1,−1, 0, 0, 0, 0; 0, 0) + +

c0 (−,−,−,−,−,−;−,+) (0, 0, 0, 0, 0, 0;−1, 1) − −
c12 (+,+,−,−,−,−;−,+) (−,−,+,+,+,+;−,+) − +

c1234 (+,+,+,+,−,−;−,+) (0, 0, 0, 0, 1, 1; 0, 0) − −
c123456 (+,+,+,+,+,+;−,+) (+,+,+,+,+,+;+,−) − +

β12 (−1,−1, 0, 0, 0, 0; 0, 0) (+,+,−,−,−,−;−,+) + −
β123456 (0, 0, 0, 0, 0, 0; 1,−1) (−,−,−,−,−,−; +,−) + −
γ0 (+,+,+,+,+,+;+,−) (0, 0, 0, 0, 0, 0; 1,−1) − −
γ56 (+,+,+,+,−,−; +,−) (−,−,−,−,+,+;+,−) − +

γ3456 (+,+,−,−,−,−; +,−) (−1,−1, 0, 0, 0, 0; 0, 0) − −
γ123456 (−,−,−,−,−,−; +,−) (−,−,−,−,−,−;−,+) − +

ai
i 6 Cartans 6 Cartans + +

ĉ0 1 Cartan 1 Cartan + +

Table 1. Weights of the geometric and non-geometric gauge transformations.

Thus, for instance

(1, 0, 0, 0, 0, 0;+,−)|H → (−1, 0, 0, 0, 0, 0;+,−)|B
(0, 0, 0, 0, 0, 0; 1,−1)|H → (−,−,−,−,−,−; +,−)|B

This change of basis dictates the form of the full 133 for the O(6, 6) × SL(2,R)|B
decomposition, which has the structure given in eq. (3.11). We present also in table 1 the

assignment of weights in this type IIB basis.

From table 1 we observe that (in the O(6, 6) × SL(2,R)|H basis) Ggeom contains all

positive roots, the Cartans and a few negative roots (corresponding to ai
j , i < j) which are

minus a simple root.7 This is referred to as a parabolic subgroup. The further subalgebra

containing just the shift symmetries b2, b6 and c+ is its unipotent radical. The geometric

subgroup Ggeom contains in particular the Borel subgroup of E7, generated by all positive

roots and Cartans. As it has been commented in the previous subsection, it is possible to

locally gauge away all the transformations which lie outside the Borel subgroup by means

of SU(8) transformations. The 70 dimensional space of fields in the Borel subgroup (the

dilaton, the metric and the B and C+ fields) define a SU(8) structure on the generalized

tangent bundle and parameterize the coset E7/SU(8). This is also the space of scalar

fields of the resulting 4d effective supergravity (7 fundamental scalars corresponding to

7In the O(6, 6) × SL(2, R)|B basis one can change conventions such that the same thing happens.
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the Cartans, 48 axions and 15 diffeomorphisms corresponding to the positive roots, which

transform non-linearly under E7/SU(8) [40, 41]).

From the point of view of string theory compactifications the decomposition of the

E7 structure into a O(6, 6) × SL(2,R) subgroup is the result of orientifolding the theory.8

Whereas in general this introduces n extra vector multiplets in the theory, as required by

anomaly cancellation, and the global symmetry group is enhanced to O(6, 6+n)×SL(2,R),

here we choose to focus on the set of (untwisted) states which come from truncation of the

parent unorientifolded theory. This set is closed under a subgroup O(6, 6) × SL(2,R) ⊂
O(6, 6+n)×SL(2,R). The simplest examples are toroidal compactifications, where the E7

structure group corresponds to the U-duality group of the resulting 4d N = 8 supergravity.

After orientifolding only half of the supersymmetries are preserved, and E7 is broken to

the U-duality group of the resulting 4d N = 4 supergravity, O(6, 6) × SL(2,R). In this

context, the change of basis vectors in eqs. (3.13)–(3.14) corresponds to T-dualizing along

all the coordinates of the internal T 6 and applying type I - SO(32) heterotic duality, thus

dualizing from a type IIB compactification with O3-planes to a heterotic compactifica-

tion. By comparing the assignment of weights for the two basis in table 1 (or alternatively

eqs. (3.8) and (3.11)) we can see how gauge transformations are mapped under this type

IIB - heterotic duality. For instance, the heterotic b2 is mapped to the type IIB c4, whereas

the heterotic b6 is mapped to the type IIB c0. We will see more details on toroidal com-

pactifications with general fluxes in section 5.

One may easily check that states transforming in spinorial representations of O(6, 6)

(e.g. 32, 32′, 352, etc.) have negative parity under the orientifold action, whereas the

remaining states have positive parity. In particular, note that the gauge fields surviving

the orientifold projection are precisely those in the adjoint of O(6, 6) × SL(2), for both

decompositions. In terms of weight vectors, we can therefore introduce an operator P such

that it acts on a given state k as

P (k) = (−1)k·uk , with u = (1, 1, 1, 1, 1, 1; 0, 0) (3.15)

This operator is identified in heterotic compactifications with the space-time fermionic

number for left-movers (−1)FL , whereas in the type IIB basis corresponds to the orien-

tifold action ΩP (−1)FLσ, where ΩP is the worldsheet parity and σ an orientifold involution

which reverses all coordinates of T 6. Acting with P on the states in table 1 we see indeed

that ĉ0, a, b2, b6, β2 and β6 are kept in the O(6, 6)×SL(2,R)|H basis, whereas a, ĉ0, c0, c4,

γ0 and γ4 are kept in the O(6, 6) × SL(2,R)|B basis. We have stated in table 1 the parity

for the different fields under (−1)FL and ΩP obtained in this way.

4 U-dual field strengths

The discussion of field strengths associated to U-duality covariant gauge potentials follows

closely the one for T-dual field strengths in section 2.2. These were obtained by tensoring

8Note that we are making a rather general use of the term ‘orientifolding’, referring also to the non-

perturbative description of an orientifold. In this general sense, the heterotic string would be for instance

considered an orientifold of type IIB String Theory through the duality chain type IIB → type I → heterotic.
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the adjoint representation of O(6, 6), containing the T-duality covariant gauge potentials,

with the vector representation, containing an extension of the standard derivative which

also accounts for states with non-zero winding. Field strengths were obtained by projecting

to the antisymmetric part of the tensor product. In the present context, the same procedure

amounts to tensoring the 56 and 133 representations of E7 that we have already introduced.

In terms of irreducible representations the tensor product decomposes as (see e.g. [42]),

56× 133 = 56 + 912 + 6480 . (4.1)

Field strengths are then identified with the 912 representation of E7 [43].

The O(6, 6) tensorial structure of the field strengths can be determined from their

weights in the O(6, 6) × SL(2,R)|H -basis, as the O(6, 6) factor is identified in this basis

with the structure group of the generalized tangent bundle. Writing a generic element in

the 912 as
912 = (12,2) + (32’,3) + (352,1) + (220,2) ,

f =
(

fAi, f i
j
−, fA+, fABCi

)

.
(4.2)

we have in the O(6, 6) × SL(2,R)|H basis9

fAi = vi(ωa + Qa) + ωi(Q′
a + ω′a)ǫ123456 ,

f i
j
− = F−vivj + P−ǫ123456(viωj + ωivj) + F ′−(ǫ123456)2ωiωj ,

fA+ =

(

1

2
Pm,i1i2 +

1

4!
Pm,i1i2i3i4 +

1

6!
F̂mǫi1...i6

)

ǫi1...i6

(

F̂ ′m +
1

2
P ′m

i1i2 +
1

4!
P ′m

i1i2i3i4

)

ǫi1,...,i6

fABCi = vi
(

Habc + ωc
ab +Qab

c +Rabc
)

+ ωi
(

H̃abc +Q′a
bc + ω′ab

c +H ′abc
)

ǫ123456 ,

(4.3)

where the traceless condition on the 352 representation (which corresponds to a traceless

vector-spinor) is encoded in the absence of a 0-form in the first line, the absence of a 6-form

in the second line, and the extra condition P ′m
mi2i3i4

= 0 that has to be imposed on this

flux. Note that as defined in eq. (4.3), fA+ does not satisfy ΓAf
A+ = 0, but it has the

same number of degrees of freedom of a traceless vector-spinor. We summarize in table 6

of appendix B the assignment of E7 weights for the field strengths in both basis and their

parity under (−1)FL and ΩP .10

To shed light on the 10d supergravity uplift of these field strengths we can compute

their explicit expression in terms of derivatives of the fields in table 1, similarly to what

9Our notation for some of the fluxes is slightly different from that of [7]. In particular, H ′ ↔ F ′ and

P ′ ↔ Q′ are exchanged. We find this notation more suited to the (−1)FL charges of the fluxes. Moreover,

Q → −Q and ω → −ω with respect to [7].
10Depending on the context, we represent the tensor structure of the fluxes in slightly different ways by

making use of the 6d antisymmetric tensor. Thus, for instance,

F̂
′1,123456 ≡ F̂

′1
ǫ
123456

P
2345
1 ≡ P1,16ǫ

123456
, etc.

The notation has been chosen in such a way that there is not possible ambiguity.
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D O(6, 6) × SL(2,R)|H O(6, 6) × SL(2,R)|B
∂1 (1, 0, 0, 0, 0, 0;−,+) (−,+,+,+,+,+; 0, 0)

∂1 (−1, 0, 0, 0, 0, 0;−,+) (1, 0, 0, 0, 0, 0;−,+)

∂̃1ǫ (−1, 0, 0, 0, 0, 0;+,−) (+,−,−,−,−,−; 0, 0)

∂̃1ǫ (1, 0, 0, 0, 0, 0;+,−) (−1, 0, 0, 0, 0, 0;+,−)

λ̂6 (+,+,+,+,+,−; 0, 0) (0, 0, 0, 0, 0, 1;+,−)

λ̂456 (+,+,+,−,−,−; 0, 0) (−,−,−,+,+,+; 0, 0)

λ̂23456 (+,−,−,−,−,−; 0, 0) (−1, 0, 0, 0, 0, 0;−,+)

Table 2. Assignment of weights in the 56 representation. The symbol ǫ means ǫ123456, i.e. an

inverse volume factor.

we did in eqs. (2.12) for T-dual field strengths. In the language of representation theory,

this is equivalent to computing the Clebsh-Gordan coefficients for the 912 representation

expressed in terms of elements of the 56 and 133.

With that aim, we take the highest weight of the 912 representation expressed as a

linear combination of weights belonging to the tensor product 56× 133,

(+,+,+,+,+,−;−1, 1) =
1√
7

[(1, 0, 0, 0, 0, 0;−,+) × (−,+,+,+,+,−;−,+) (4.4)

− (0, 1, 0, 0, 0, 0;−,+) × (+,−,+,+,+,−;−,+)

+ (0, 0, 1, 0, 0, 0;−,+) × (+,+,−,+,+,−;−,+)

− (0, 0, 0, 1, 0, 0;−,+) × (+,+,+,−,+,−;−,+)

+ (0, 0, 0, 0, 1, 0;−,+) × (+,+,+,+,−,−;−,+)

− (0, 0, 0, 0, 0,−1;−,+) × (+,+,+,+,+,+;−,+)

+ (+,+,+,+,+,−; 0, 0) × (0, 0, 0, 0, 0, 0;−1, 1)]

The numerical coefficients have been determined in such as way that the r.h.s. of the equa-

tion vanishes when acted with any positive root of E7, as corresponds to the highest weight

of a representation. We refer the reader to appendix A for further details on the E7 algebra

and root system.

In terms of the elements in tables 1 and 6, eq. (4.4) reads,

F12345 = 5∂[1c2345] − ∂6c123456 + λ̂6b123456 (4.5)

where, for convenience, we have introduced a generalized exterior derivative in the 56

representation

D ≡
(

(∂m + ∂m)vi + (∂̃m + ∂̃m)ωi, λ̂−
)

(4.6)

The assignment of weights is presented in table 2.

Note that the first term in the r.h.s. of eq. (4.5) corresponds to the standard definition

of the 5-form RR field strength, whereas the second and third terms correspond to locally

non-geometric contributions.
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Acting on eq. (4.4) with the generators associated to negative roots E−αi
, i = 1, . . . , 7

(c.f. eqs. (A.2) in the appendix) we can build similar relations for the other elements in

the 912. For instance, acting on eq. (4.4) with E−α6E−α4E−α5 leads to,

F123 = 3∂[1c23] + ∂ic123i + λ̂456b123456 (4.7)

The procedure can be systematized with the aid of the computer.11 In terms of

eqs. (3.1) (with λ→ D), (3.5) and (4.2) we get,

f i
j
− = −ǫjkDM(iΓMA

+k) +D−Ai
j (4.8)

fMNPi = 3Di[MANP ] + 〈D−,ΓMNPA+i〉 (4.9)

fMi = 2Di[NAM ]PηNP + 2DMjAi
j + 〈D−,ΓMA+i〉 (4.10)

fM+ = ǫijD
MiA+j − 1

11
ǫijD

NiΓN
MA+j −AM

NΓND− +
1

10
ANP ΓMNPD− (4.11)

where ΓM are the O(6, 6) Gamma matrices, which act on forms by12

ΓA ↔ (dxm∧, ιm) (4.12)

and the bracket denotes the Mukai pairing defined by

〈ψ,χ〉 =
∑

p

(−)[(p+1)/2]ψp ∧ χ6−p . (4.13)

Equations (4.8)–(4.11) encode the expression of all the field strengths contained in

the 912 representation of E7, expressed in terms of generalized derivatives of the gauge

potentials in the 133 representation. We can recast them in a more standard form by

making use of eqs. (3.8), (4.3) and (4.6). For simplicity we only present here explicitly the

field strengths which involve standard derivatives of the potentials in table 1 (i.e. we set to

zero all the exotic derivatives in eq. (4.6)), and which therefore admit an uplift to locally

geometric solutions of 10d type IIB supergravity. We can organize them as follows:

1. NSNS fluxes:

Hijk = 3∂[ibjk] (4.14)

2. RR fluxes:

Fijklm = 5∂[icjklm] , Fijk = 3∂[icjk] , Fi = ∂ic0 (4.15)

11There are some subtleties that have to be taken into account, however. In particular, notice that there

can be independent sequences of negative roots which result in the same weight of 912. This is the origin of

the multiple copies of the same weight appearing in the (220,2) and (12,2), or in the (352,1) and (32′,3)

(c.f. appendix A). In order to disentangle weights appearing in various representations of O(6, 6)×SL(2, R)

it is important to stress that in the conventions of appendix A, E−αi
, i = 1, . . . , 6 is also a basis of negative

roots of O(6, 6), whereas the negative root of SL(2, R) is given by the combination

[E−α7
, [. . . [E−α3

, [E−α2
, E−α1

]] . . .]]

where the sequence of subindices is 7, 6, 4, 5, 3, 4, 6, 7, 2, 3, 4, 6, 5, 4, 3, 2, 1.
12ιm means a contraction along m, which acts like ιm

1
p!

Ai1...ipdxi1 ∧ dxip = 1
(p−1)!

Ami2...ipdxi2 ∧ dxip .
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3. Metric fluxes:

ωk
ij = 2∂[ia

k
j] , ωp = ∂ia

i
p (4.16)

4. β-deformations (NSNS):

Qij
k = ∂kβ

ij , Qp = ∂iβ
ip , Q′123456

i = −∂iβ
123456 (4.17)

5. γ-deformations (RR):

P jk
i = ∂iγ

jk , P jklm
i = ∂iγ

jklm , P ′i,jklm = ∂qγ
ijklmq , F̂i = ∂iγ0 ,

P k = ∂iγ
ik , P klm = ∂iγ

iklm , P klmrs = ∂iγ
iklmrs (4.18)

Any vacuum of the 4d theory involving only these backgrounds should admit a consistent,

locally geometric, description in terms of 10d type IIB supergravity. Indeed, the uplift to

10d is almost automatic for NSNS, RR and metric fluxes, as these field strengths are in one

to one correspondence with field strengths of type IIB supergravity. From the algebraic

point of view they correspond to derivatives of elements in Ggeom. On the other hand,

elements which lie outside the Borel subalgebra (β- and γ-deformations) in general require

also local SU(8) transformations to be described as a locally geometric 10d background.

Note however that our definition of the fluxes is “gauge dependent”, in the sense that for

given a background, β, γ, etc. are not uniquely defined, and by means of SU(8) transor-

mations they can even be gauged away. They will be uniquely defined in the next section,

when we deal with backgrounds admitting a torus action and that have a globaly defined

basis for the generalized tangent bundle.

Backgrounds of 10d supergravity which involve β-deformations have been considered

in the recent literature [44, 45], important in the context of the AdS/CFT correspondence

for understanding some of the marginal deformations of N = 4 super Yang-Mills [46].

Backgrounds of 10d supergravity involving γ-deformations, on the other hand, have been

much less studied (see, however, [33] for some partial results). As it has been commented,

γ-deformations provide the RR counterpart of the β-deformation.

The orientifold projection selects field strengths which lie in the (220,2) + (12,2)

representation. These can be read directly from table 6, for both type IIB with O3-planes

(O(6, 6) × SL(2,R)|H basis) and heterotic string compactifications (O(6, 6) × SL(2,R)|H
basis). We summarize the surviving set of fields in tables 3 and 4, where we write in paren-

thesis the components which do not admit a locally geometric interpretation in terms of

10d supergravity.

For type IIB orientifold compactifications, γ-deformations provide the complexifica-

tion of the β parameter of the deformed 4d super Yang-Mills theory in the worldvolume of

D3-branes,

β2 − SBγ2 (4.19)

where SB is the type IIB complex dilaton defined in eq. (3.10). As we will see in section 6,

N = 1 supersymmetry equations require the above combination to be an anti-holomorphic
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weight IIB with D3/D7 heterotic

(1, 1, 1, 0, 0, 0 ;−1
2 ,

1
2 ) F456 H123

(1, 1,−1, 0, 0, 0 ;−1
2 ,

1
2) Q12

3 ω3
12

5× (1, 0, 0, 0, 0, 0 ;−1
2 ,

1
2) Q1m

m ωm
1m

(1,−1,−1, 0, 0, 0 ;−1
2 ,

1
2) (P ′1,1456) Q23

1

5× (−1, 0, 0, 0, 0, 0 ;−1
2 ,

1
2) P ′2,3456 Q1m

m

(−1,−1,−1, 0, 0, 0 ;−1
2 ,

1
2 ) (H ′456,123456) (R123)

(1, 1, 1, 0, 0, 0 ; 1
2 ,−1

2 ) H456 (H̃123)

(1, 1,−1, 0, 0, 0 ; 1
2 ,−1

2) P 12
3 (Q′3,3456)

5× (1, 0, 0, 0, 0, 0 ; 1
2 ,−1

2 ) P 1m
m (Q′[2,3456])

(1,−1,−1, 0, 0, 0 ; 1
2 ,−1

2) (Q′1,1456) (ω′23456,23)

5× (−1, 0, 0, 0, 0, 0 ; 1
2 ,−1

2) (Q′[2,3456]) (ω′m
1m)

(−1,−1,−1, 0, 0, 0 ; 1
2 ,−1

2 ) (F ′456,123456) (H ′123,123456)

Table 3. Field strengths transforming in the (220,2) representation of O(6, 6) × SL(2,R). Com-

ponents between parenthesis do not admit a 10d locally geometric description.

weight IIB with D3/D7 heterotic

(1, 0, 0, 0, 0, 0 ;−1
2 ,

1
2) Q1 ω1

(−1, 0, 0, 0, 0, 0 ;−1
2 ,

1
2 ) P 23456 Q1

(1, 0, 0, 0, 0, 0 ; 1
2 ,−1

2) P 1 Q′123456
1

(−1, 0, 0, 0, 0, 0 ; 1
2 ,−1

2 ) Q′123456
1 (ω′1)

Table 4. Field strengths transforming in the (12,2) representation of O(6, 6)× SL(2,R). Compo-

nents between parenthesis do not admit a 10d locally geometric description.

(0, 2) complex bi-vector. We postpone further comments on this type of backgrounds to

that section.

It is also interesting to stress that some of the field strengths in eqs. (4.16)–(4.18) trans-

form in the (12,2) representation, either with respect to the O(6, 6)×SL(2,R)|H basis (ωi,

Qi and Q′123456
i ) or to the O(6, 6)×SL(2,R)|B basis (Qi, P i, P ijkrs and Q′123456

i ). Hence,

according to table 4, most of the field strengths in the (12,2) representation admit a priori

an uplift to 10d locally geometric type IIB or heterotic supergravity backgrounds. These

are related to non-traceless metric fluxes, β- and γ-deformations. These field strengths will

turn out particularly relevant in the context of 4d N = 4 gauged supergravity, as it will

become manifest in next section.
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5 Toroidal compactifications and dual fluxes

Up to here we have been discussing various aspects related to the local E7 structure of the

generalized tangent bundle, or the O(6, 6)× SL(2,R) subgroup which survives after taking

the orientifold projection. We have in particular introduced a set of gauge parameters,

gauge fields and field strengths which are covariant under the structure group.

In the present (and forthcoming) section we consider the inclusion of topologically non-

trivial fluxes for these field strengths. The global structure of the tangent bundle therefore

becomes relevant also. In that regard, here we consider the simplest possible situation,

namely compactifications on manifolds of trivial structure (tori, or “twisted tori”). Since

tori are parallelizable manifolds, global and local structure groups in this case coincide.

The fluxes are in this case defined globally and “gauge independently”, as there is a global

basis for the generalized tangent bundle. The more interesting case of (not necessarily

toroidal) compactifications with global SU(3) structure will be treated in section 6.

The E7 structure group of the generalized tangent bundle becomes in toroidal com-

pactifications also the global symmetry group of the resulting effective 4d N = 8 gauged

supergravity. The 56 representation discussed in section 3.1 relates to the 56 vector fields of

N = 8 supergravity (in its electric-magnetic covariant formulation), whereas the 912 rep-

resentation of field strengths, discussed in section 4, is nothing but the embedding tensor of

the gauged version [47], thus establishing a precise dictionary between fluxes and gaugings.

After taking the orientifold projection (see footnote 8), the structure group is reduced

to O(6, 6) × SL(2,R), accordingly to the discussion in section 3.3. This is also the global

symmetry group of the resulting 4d N = 4 gauged supergravity. In this case, vector fields

in the 4d theory are grouped in the (12,2) representation of O(6, 6) × SL(2,R), whereas

field strengths arrange in the (220,2) + (12,2) representations (c.f. tables 3 and 4) and

correspond to the embedding tensor of 4d N = 4 gauged supergravity [35].

In this context, it results particularly interesting the observation found in section 4 that

all gaugings in the (12,2) representation admit an uplift to locally geometric solutions of

10d supergravity. From the 4d point of view, some of these gaugings are known to be related

to twists by an axionic rescaling symmetry [36]. Their higher dimensional origin, however,

has been a more obscure and longstanding problem. Some of them have been identified as

arising on particular Scherk-Schwarz reductions of 10d heterotic supergravity [37]. This is

consistent with table 4, where we observe that gaugings in the first row admit an uplift to

heterotic compactifications with non-traceless metric fluxes. Also, more recently it has been

shown that some of these gaugings admit an uplift to type IIA orientifold compactifications

with dilaton fluxes [34]. In this regard, the results of section 4 reveal that all gaugings in

the (12,2) representation can be also understood as originating from type IIB orientifold

compactifications with non-traceless β- and γ-deformations.

5.1 U-dual gauge algebra and constraints

The different fluxes, grouped in the 912 representation of the U-duality group E7, are

expected to obey diverse constraints. In fact, from the 10d point of view, Bianchi identities

as well as tadpole cancelation equations must be satisfied.
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From a 4d perspective fluxes are associated to the structure constants of the gauge

algebra satisfied by the vectors of the effective N = 8 gauged supergravity, given in eq. (3.4).

Formally, we expect to have an algebra

[XA,XB] = FP
AB XP (5.1)

where XA are the gauge generators and FP
AB encode the fluxes. Here A, B, etc. are indices

of the 56 representation of E7 (see section 3.1). If Jacobi identities are satisfied, then fluxes

are constrained to obey

FP
[ABF

L
C]D = 0 (5.2)

In [33] it was shown, for a particular type IIB orientifold, that these Jacobi identities are

actually identified with the Bianchi identities and tadpole equations of the higher dimen-

sional theory. Therefore, once the dictionary between structure constants and fluxes is

known we should be able to read the flux constraints directly from the Jacobi identities of

the 4d gauge algebra.

In a generic situation (see for instance [25]), the function FP
AB expressed in terms of

the fluxes is not antisymmetric in the subindices A,B and therefore does not define a con-

sistent algebra.13 In order to ensure antisymmetry of the commutators, extra constraints

must be imposed. Namely, the symmetric part of the structure constants, contracted with

generators must vanish, FP
(AB) XP = 0. Jacobi identities are therefore satisfied when a

contraction with a third generator is considered. In terms of structure constants this new

condition reads

FP
ABF

L
PC + FP

BAF
L
PC = 0 (5.3)

In what follows we sketch a possible way to obtain the expression of the structure constants

in terms of fluxes. The idea is to follow similar steps as in ref. [33]. In other words, by

starting with a previously known sector of the algebra (5.1), we can apply E7 generators

to it in order to construct the entire algebra.

By looking at both sides of the gauge algebra (5.1), we see that in terms of irreducible

representations of E7, the left hand side leads to

56× 56 = (1 + 1539)A + (133 + 1463)S (5.4)

where we have made explicit the distinction between symmetric and antisymmetric repre-

sentations. Similarly, the right hand side decomposes as

912× 56 = 1539 + 133 + 40755 + 8645 (5.5)

Thus, in order for both sides to match, only products of states belonging to the 1539

antisymmetric representation must be kept.

We start considering the sector of the algebra invariant under an O(6, 6)× SL(2,R) ⊂
E7 subgroup. It is possible to check that the 1539 representation of E7 decomposes as

1539 = (77,1) + (32,2) + (66,3) + (495,1) + (352,2) + (1,1) (5.6)

13In the general situation where FP

(AB) 6= 0, in order to covariantize the Lagrangian 4d gauge bosons have

to be supplemented with the 2-forms which result from dualizing the scalars of the theory [48].
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Similarly, the generators of the algebra are decomposed accordingly to eq. (3.1),

XA = XAi ⊕X ′
S− (5.7)

where S− is a weight belonging to the 32’ representation. Alternatively, X ′
S− can be

expressed in terms of a set of multi-vectors, X ′
S− = X ′

m ⊕X ′
mno ⊕X ′

mnopq.

The general structure of the algebra, written in terms of O(6, 6) × SL(2,R) content

hence reads

[XAi ⊕XS−,XBj ⊕X ′
S′− ] = FPk

ABXPk + FS′′−

AB X ′
S′′− (5.8)

where A = (Ai, S−) and B = (Bj, S′−). To start with, we choose the subsector given by

the fluxes transforming in the (12,2) + (220,2) representation of O(6, 6) × SL(2,R)

[XAi,XBj ] = FPk
AiBjXPk (5.9)

In this case the explicit expression for structure constants is known to be [35]

F kP
AiBj = δk

j fAB
P

i +
1

2

(

δk
j fBiδ

P
A − δk

j fAiδ
P
B + ǫijf(A|lǫ

lkδP
B) − ηABf

P
[i δ

k
j]

)

(5.10)

with fAi and fABCi given in eq. (4.2), while the antisymmetry constraint is

ǫijfAB
P

ifPDLj = 0 (5.11)

Notice that performing a similar analysis as above in terms of representations, the left

member of eq. (5.9) leads to

(12,2)× (12,2)A = (66,3) + (1,1) + (77,1) (5.12)

while the right hand side contains the structure constants given in eq. (5.10) times gauge

generators in the (12,2) representation, namely [(220,2)+(12,2)]912×(12,2). Inspection

of the structure constants indicates that (66,3) comes from products with (220,2) fluxes

while the rest comes from products with (12,2) fluxes.

For the sake of clarity let us present a concrete example and choose i = 1, j = 2 and

A = 1 + 6, B = 2 + 6. Then, in terms of type IIB fluxes, we read from eq. (5.9)

[X̂1,X2] = Q12
p X̂

m + F̃ 12mX̂p − P 12
p Xm + H̃12mXm (5.13)

+Q1X̂2 + 2Q2X̂1 − 2P 1X2 − P 2X1

where, in order to avoid confusion with the notation we have defined

X̂m ≡ X(m+6)1 , Xm ≡ X(m+6)2 , m = 1, . . . , 6 (5.14)

to denote the two elements of the SL(2) doublet in (12,2), with weights (0, 1, 0, 0, 0, 0,∓,±)

(where 1 is in the m-th entry). The first row of (5.13) contains fluxes in the (220,2) repre-

sentation, summarized in table 3, while the second row corresponds to fluxes in the (12,2),

presented in table 4.
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As mentioned, by applying E7 generators the full algebra can be reconstructed. For

instance, by acting with Eα7 , the generator corresponding to the positive simple root

α7 ≡ (−,−,−,−,−,−;−,+), we obtain the commutator between a vector in the (12,2)

and a spinor in the (32′,1). Hence, acting in the left hand side of (5.13) and taking into

account that Eα7X̂
m → X ′m, we observe that (1 ⊗ Eα7 + Eα7 ⊗ 1)[X̂1,X2] → [X ′1,X2].

Here, X ′m is the generator corresponding to the weight (−,−,−,+,−,−; 0, 0) of the 32’

representation, with + in the m-th position.

In the same way we can obtain the terms on the right hand side. Thus, by acting with

Eα7 on the fluxes we see that

P 12
p → ω′12

p (5.15)

H̃12p → P ′p,12 − 1√
2
P 12p (5.16)

Qi → ω′i (5.17)

whereas the action on the other terms which appear in the right hand side of eq. (5.13)

vanishes. Putting all together, and proceeding in a similar way for the other [X̂m,Xn]

commutators, we get

[X ′m, X̂n] = ω′mn
p X̂p + (P ′p,mn +

1√
2
P mnp)X̂p + 2ω′mX̂n + ω′nX̂m (5.18)

+Qab
p X

′p + QmX ′n + 2QnX ′m

Following similar steps we could derive the rest of commutators. For instance, by acting

with the generator corresponding to the negative root µ ≡ (−,−,−,−,−,−; +,−) we

would have Eµ : [X ′1, X̂2] → [X ′1,X ′2] in the 32′ × 32′. The presentation of the full

algebra and constraints is beyond the scope of this work.

5.2 Toroidal orbifolds and flux induced superpotentials

Whereas compactification on a T 6 orientifold leads to N = 4 theories in 4d, one can easily

reduce the amount of supersymmetry to N = 1 by orbifolding the theory with a discrete

symmetry group Γ ⊂ SU(3). Toroidal orbifolds are the simplest examples of compactifi-

cations with global SU(3) structure. The general (non toroidal) case will be considered in

section 6.

The feature that makes toroidal orbifolds quite treatable despite the small amount

of supersymmetry preserved, is that the structure group of the tangent bundle is still the

trivial one, except at the orbifold singularities, where it is reduced to SU(3). Hence, we can

distinguish two types of states in the effective theory: untwisted states, which arise from

direct truncation of the parent N = 4 theory and are invariant under a global symmetry

group G ⊂ O(6, 6) × SL(2,R), and twisted states localized at orbifold singularities, which

are not directly related to a truncation of the parent N = 4 theory and transform under a

larger symmetry group Gtwist 6⊂ E7.

In this way, we can easily make use of the global O(6, 6) × SL(2,R) symmetry of the

parent N = 4 theory to describe the effective action of untwisted fields, keeping in mind

that only the subset of fields invariant under Γ survive in the orbifolded N = 1 theory.
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5.2.1 Type IIB orientifold compactifications

We focus here on type IIB compactifications on T 6/[ΩP (−1)FLσ×Γ], where the orientifold

involution σ reverses all coordinates of T 6. In particular, σ(J) = J and σ(Ω) = −Ω. There

are O3-planes spanning the space-time directions and, depending on the particular choice

of Γ, there can be also O7-planes wrapping complex 4-cycles within the T 6. Consistently

with this, D3 and/or D7-branes may be also required in the compactification to cancel the

total RR charge.

Following [49] we can introduce a basis for 3-forms in the covering T 6 as,

α0 = dx1 ∧ dx2 ∧ dx3 , αi
̃ =

1

2
ǫilmdx

l ∧ dxm ∧ dx̃ , (5.19)

β0 = dx1̃ ∧ dx2̃ ∧ dx3̃ , βi
̃ = −1

2
ǫ̃l̃m̃dx

l̃ ∧ dxm̃ ∧ dxi , i, ̃ = 1, 2, 3

with ∫

αi
̃ ∧ βl̃

k = δi
kδl̃

̃ (5.20)

In terms of these, the holomorphic 3-form can be expanded as,

Ω = α0 + U i
̃αi

̃ − (cof U)i
̃βi

̃ + (det U)β0 (5.21)

where,

(cof U)i
̃ =

1

2
ǫilmǫ

̃p̃q̃U l
p̃U

m
q̃ , det U =

1

3!
ǫilmǫ

̃p̃q̃U l
p̃U

m
q̃U

i
̃ (5.22)

The scalars Um
q̃ correspond to moduli of the complex structure defined by Ω in T 6,

Ω = dz1 ∧ dz2 ∧ dz3 , dzm = dxm + Um
p̃dx

p̃ (5.23)

Similarly, the moduli parameterizing deformations of the Kähler structure of T 6 can be

extracted from the complexified 4-form,14

Jc = C4 −
i

2
e−φJ ∧ J = −T lm̃ωlm̃ , (5.24)

where ωlm̃ is a basis of integer 4-forms even under the orientifold involution,15

ωĩ =
1

4
ǫilmǫ̃p̃q̃dx

l ∧ dxp̃ ∧ dxm ∧ dxq̃ (5.25)

The complex axion-dilaton SB has been defined in eq. (3.10). The complex scalars Um
q̃,

T lm̃ and SB parameterize the coset SL(2)|B
U(1) ×

O(6,6)
O(6)×O(6) . Their weight vectors can be ob-

tained from the adjoint representation of E7, summarized table 1. For that one has to note

that only the (66,1) + (1,3) ⊂ 133 of O(6, 6) × SL(2,R) survive the orientifold projec-

tion, according to what was described in section 3.3. Subtracting out the O(6)×O(6) and

U(1) pieces associated to local gauge transformations and keeping elements in the Borel

subalgebra, then leads to the weight vectors in table 5.

14We have taken C4 → −C4 and Jc → −Jc with respect to [7, 33] in order to match the usual conventions

in Generalized Complex Geometry.
15Notice that before applying the orbifold projection Γ, the first of the equations in (6.1) below is gener-

ically not satisfied, and it is only after the projection that J and Ω define an SU(3) structure.
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scalar weight

S (0, 0, 0, 0, 0, 0 ;−1, 1)

Um
q̃ (1, 0, 0,−1, 0, 0 ; 0, 0)

T lm̃ (1, 0, 0, 1, 0, 0 ; 0, 0)

Table 5. Weights in the (66,1) + (1,3) representation of O(6, 6) × SL(2,R)|B associated to the

moduli of T 6.

The metric of this moduli space is given in terms of the Kähler potential [50],

K̂O3 = −log
[

−i(S − S̄)
]

− log

[

−i
∫

Ω ∧ Ω̄

]

− 2log

[

1

6

∫

J ∧ J ∧ J
]

(5.26)

An explicit expression of the second integral in terms of the complex structure moduli for

a general T 6 can be found, for instance, in [49].

We can consider now the effect of switching on background fluxes in the compact

manifold. Let us start turning on standard supergravity fluxes. The ones that survive

the orientifold and orbifold projections are RR and NSNS 3-form fluxes along three cy-

cles of the internal T 6. The deformation induced in the 4d effective supergravity theory

is particularly well-known in this case. Their effect is encoded in a non-trivial effective

superpotential of the form [51],

WO3 =

∫

Ω ∧ (F3 − SBH3) (5.27)

Note that, since the covering T 6 is parallelizable, there is a basis of globally defined one-

forms that can be used to define global fluxes that are non-trivial in cohomology, such that

the integral in eq. (5.27) does not vanish. Locally, these fluxes are introduced by local

gauge fields as discussed in previous sections.

Three-form fluxes generically induce an overall charge of D3-brane. Under global

monodromies of the T 6, both C2 and B2 shift, and one has to patch the background by using

gauge transformations with parameters Λ for B2, as in eq. (2.5), and similarly Λ̂1 for C2.

The superpotential (5.27) is at the core of many of the recent phenomenological ap-

proaches to string theory, where moduli stabilization is a must. However, in section 4 it was

recast that F3 and H3 are only a piece of the (220,2) representation of O(6, 6)×SL(2,R)|B .

In table 3 we summarized all the elements in the representation.

We can therefore generalize eq. (5.27) to incorporate all the remaining fluxes in the

(220,2) representation. Following the same strategy than in [5, 7, 33], we act with

the O(6, 6) × SL(2,R)|B generators on (5.27), or rather, on the invariant superpotential,

G = log|WO3|2 + K̂O3, with K̂O3 given in (5.26). For that we observe that WO3 trans-

forms with weight (1, 1, 1, 0, 0, 0;−1
2 ,

1
2) and moduli transform with weights summarized in

table 5. We can build O(6, 6)/[O(6) ×O(6)] covariant 3-forms linear in the fluxes by con-

sidering contractions of the fluxes in table 3 with one or more copies of the 4-form Jc. The

number of copies of Jc which are required is dictated by the tensorial structure of the fluxes,
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derived in previous sections. Moreover, since the holomorphic 3-form Ω carries no charge of

SL(2)/U(1)|B , the combination of fluxes which couples to Jc has to be always of the form

f2−Sf1, with f2 (f1) the highest (lowest) component in the doublet of SL(2)|B . Based on

the above observations, it is possible to show then that the superpotential involving the

full (220,2) representation of fluxes is given by,

WO3 =

∫

Ω∧ [(F3−SBH3)+(Q−SBP ) ·Jc +(P ′−SBQ
′) ·J 2

c +(H ′−SBF
′) ·J 3

c ] (5.28)

where,

(Q · Jc)p1p2p3 =
1

2
Qmn

[p1
(Jc)p2p3]mn

(P ′ · J 2
c )p1p2p3 =

1

42 · 4!P
′m
[p1p2|

(Jc)i1i2i3i4(Jc)i5i6m|p3]ǫ
i1...i6 , (5.29)

(H ′ · J 3
c )p1p2p3 =

5

3! · 128H
′p4p5p6(Jc)i1i2i3i4(Jc)i5i6[p5p6

(Jc)p1p2p3p4]ǫ
i1...i6

and similarly for P · Jc, Q
′ · J 2

c and F ′ · J 3
c . The reader may check that all terms in this

equation indeed transform with weight (1, 1, 1, 0, 0, 0;−1
2 ,

1
2), as desired.

Of course, one has to bear in mind that in concrete models many of the flux com-

ponents which appear in (5.28) are projected out by the orbifold action Γ. In particular,

one may check that (5.28) reproduces the results derived by similar arguments in [7, 33]

for the case of Γ = Z2 × Z2 and G = SL(2,R)7.16 In addition, the quadratic constraints

derived in section 5.1 require in general further components to vanish. Hence, many of the

vacua which result from (5.28) are actually related by 4d electric-magnetic duality. Sys-

tematic analysis of the the vacuum structure induced by the first two pieces in the above

superpotential for Γ = Z2 × Z2 have been carried out recently in [52–55].

We could consider also fluxes transforming in the (12,2) representation of O(6, 6) ×
SL(2,R)|B , since they survive to the orientifold projection too, by acting with E7 gener-

ators on eq. (5.28). We postpone however the discussion of these fluxes to section 6.3,

where the complete flux induced effective superpotential is derived in the broader context

of general SU(3) structure compactifications.

5.2.2 Heterotic orbifold compactifications

The derivation of the flux induced effective superpotential for heterotic compactifications

on toroidal orbifolds follows closely the discussion in the preceding subsection. Complex

structure moduli are still defined in terms of the holomorphic 3-form, as in eq. (5.21). On

the other hand, Kähler moduli are now given in terms of the complexified 2-form,

Jc = B2 + iJ = Tlm̃ω̂
lm̃ (5.30)

16For completeness we present here the embedding of SL(2, R)7 ⊂ E7 selected by the Z2 × Z2 orbifold.

This is given by 7 coordinate vectors, σi, one per SL(2, R) factor. In the conventions of [7] for SL(2, R)7,

these are given by,

σ0 =
1

2
(ẽ8 − ẽ7) , σi =

1

2
(ẽi + ẽi+3) , σi+3 =

1

2
(ẽi − ẽi+3) , i = 1, 2, 3

with ẽi the orthonormal vectors of the B basis, introduced in section 3.3.
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where ω̂lm̃ is a basis of integer 2-forms (see footnote 15), ω̂lm̃ = dxl ∧ dxm̃. The heterotic

axion-dilaton SH was defined in eq. (3.9). These definitions are such that the corresponding

weight vectors in the O(6, 6)× SL(2,R)|H basis are still given by table 5. All together, the

scalars parameterize the coset SL(2)|H
U(1) ×

O(6,6)
O(6)×O(6) with Kähler metric,

K̂het. = −2log[−i(SH − S̄H)]− log

[

−i
∫

Ω ∧ Ω̄

]

− log

[

1

6

∫

J ∧ J ∧ J
]

(5.31)

To get the full superpotential, the starting point is the known effective superpotential

for heterotic compactifications with 3-form NSNS flux and torsion [56–61]

Whet. =

∫

Ω ∧ (H3 + idJ) (5.32)

We can now proceed as before in order to extend this superpotential to the full set of fluxes

transforming in the (220,2) representation of O(6, 6)×SL(2,R)|H . These are summarized

in the last column of table 3. After some algebra we arrive to the expression,

Whet. =

∫

Ω ∧
[

(H3 − SHH̃3) + (ω − SHQ
′) · Jc + (Q− SHω

′) · J2
c + (R− SHH

′) · J3
c

]

(5.33)

where the contractions are defined as,

(ω · Jc)p1p2p3 = ωm
[p1p2

(Jc)p3]m

(Q · J2
c )p1p2p3 =

1

2
Qmn

[p1
(Jc ∧ Jc)p2p3]mn (5.34)

(R · J3
c )p1p2p3 =

1

3!
Rp4p5p6(Jc ∧ Jc ∧ Jc)p1p2p3p4p5p6

and similarly for Q′, ω′ and H ′ (c.f. footnote 10).

It is illuminating to express this superpotential in terms of the tensors fABCi and fAi,

defined in eqs. (4.3), which in the present context are just the embedding tensors of the

parent N = 4 gauged supergravity theory [35]. We find the compact expression

Whet. =

∫

Ω ∧ [G3 · eJc + G1 · eJc ] . (5.35)

where we have included also fluxes transforming in the (12,2) representation whose super-

potential will be derived in section 6.3. G3 and G1 are defined as

(G3)ABC = fABC2 − SHfABC1 , (G1)A = fA2 − SHfA1 (5.36)

where a subindex 2 (1) refers to the direction vi (ωi), and the contraction · is the O(6, 6)

action fABCiΓ
ABC and fAiΓ

A, with the gamma matrices acting as in eq. (4.12).

6 General N = 1 compactifications

In this section we consider compactifications that preserve N = 1 supersymmetry in 4d,

and which are not necessarily toroidal. From the phenomenological point of view this
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is perhaps the most appealing case. The existence of a single nowhere vanishing spinor

reduces the structure of the tangent bundle to a global SU(3) structure. The latter can be

completely characterized in terms of a globally defined SU(3) invariant (1, 1)-form J , and

a holomorphic (3, 0)-form Ω, which satisfy the relations

J ∧Ω = 0 , J ∧ J ∧ J = −i3
4
Ω ∧ Ω̄ (6.1)

In what follows we first review the O(6, 6) and E7 covariant formulations of N = 1 back-

grounds, following respectively [22–24] and [39]. Then we address in section 6.3 the com-

putation of the effective superpotential in general SU(3) structure compactifications with

arbitrary fluxes.

6.1 O(6, 6) formulation of N = 1 backgrounds

Four-dimensional N = 1 supersymmetry requires the existence of nowhere vanishing inter-

nal spinors η1 and η2 such that the 4d supersymmetry parameter ε is obtained from the

two 10d ones ǫ1,2 by

ǫ1 = ε+ ⊗ η1
− + ε− ⊗ η1

+ ,

ǫ2 = ε+ ⊗ η2
− + ε− ⊗ η2

+ ,
(6.2)

We have chosen the chirality of the 10d spinors to be negative. There is no requirement

a priori on the relative orientation of the spinors η1,2. Each of them is invariant under an

SU(3) structure on the 6-dimensional space. If the two spinors are the same, they give

rise to a single SU(3) structure. Whenever the spinors do not coincide, the two SU(3)

structures intersect into an SU(2). If there are points on the manifold where the spinors

are parallel, there is no global SU(2) structure, but only a local one.

The two spinors can be combined to form complex pure spinors of O(6, 6)

Φ+
0 = η1

+η
2 †
+ , Φ−

0 = η1
+η

2 †
− . (6.3)

Making use of Fierz identities, it is possible to express Φ±
0 as sums of spinor bilinears,

namely

η1
+η

2 †
+ =

1

8

∑

p

1

p!

(

η2 †
± γm1...mpη

1
+

)

γmp...m1 . (6.4)

By chirality, only even (odd) p contribute to Φ+ (Φ−) and these can equivalently be thought

of as sums of even or odd forms in the 32 and 32’ representations of O(6, 6). In the special

case where the two spinors coincide, i.e. η1 = η2, the pure spinors read

Φ+
0 = e−iJ , Φ−

0 = −iΩ , (6.5)

where J and Ω are those of eqs. (6.1).

By construction Φ±
0 are pure, i.e. each of them is annihilated by half of the twelve

O(6, 6) gamma matrices ΓA, splitting the generalized tangent bundle into a 6-dimensional

complex holomorphic bundle (given by i± = 1, . . . , 6 such that Γi±Φ±
0 = 0) and its complex
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conjugate antiholomorphic bundle.17 In other words, Φ±
0 define each a generalized (almost)

complex structure J ±
0 , satisfying (J±

0 )2 = −I, that can be obtained from the spinors by

J ±A
0 B = i

〈Φ±
0 ,Γ

A
BΦ̄±

0 〉
〈Φ±

0 , Φ̄
±
0 〉

, (6.6)

where O(6, 6) gamma matrices act as in (4.12), and the bracket is the Mukai pairing defined

in eq. (4.13), which is the natural bilinear on O(6, 6) spinors.

Two compatible pure spinors define a generalized (positive definite) metric on the

generalized tangent space. Using the generalized almost complex structures associated to

the pure spinors, the generalized metric is given by

H = −η J+J − . (6.7)

This is the same metric as in eq. (2.9). For the pure spinors (6.5), it gives a block diagonal

matrix (corresponding to B2 = 0), where g is obtained in the standard way from an SU(3)

structure (in complex coordinates gī = −iJī).

In order to obtain a generalized metric that contains a B2 field, one needs to B-

transform the pure spinors, i.e. to apply an O(6, 6) transformation corresponding to a B2

field to eq. (6.5) (or more generally to eq. (6.3)). Making use of eq. (A.4) and the represen-

tation for gamma matrices in eq. (4.12), it is not hard to see that the B-transform on the

pure spinors amounts to a wedge product of B2 and the component forms. Exponentiating

the action we get Φ± = eB2Φ±
0 which for the case η1 = η2, corresponding to a single SU(3)

structure, implies

Φ+ = eB2−iJ , Φ− = −ieB2Ω . (6.8)

In terms of the pure spinors, the Kähler potential for the N = 1 theory in the context of

type IIB compactifications reads [24]

K̂ = − log

[

i

∫

〈Φ−, Φ̄−〉
]

− 2 log

[

i

∫

〈e−φΦ+, e−φΦ̄+〉
]

. (6.9)

It is easy to see that this is equivalent to (5.26). Note that the contribution of B2 drops

out, as it should be since the Mukai pairing is an O(6, 6) invariant, and the B2 field is an

adjoint O(6, 6) action.

The second term in the Kähler potential should be written in terms of the N = 1

variables JC and SB . These can be read off from a combination of Φ+, the dilaton and

the RR potentials into the following complex form [24]

Φ+
C = eB2C+ + ie−φRe (eiθΦ+) (6.10)

where θ is an angle that defines the N = 1 orientifold projection. For O3/O7 planes θ = 0,

while for O5/O9, θ = π/2. In the case of type IIB compactifications with O3-planes,

Φ+
C = eB2(SB + JC +C2 +C6). Hence the 0-form component of Φ+

C is the complex axion-

dilaton SB, while the 4-form component is precisely JC defined in eq. (5.24). Note that

17Furthermore, Φ±

0 are by construction compatible, which implies that the two 6-dimensional holomorphic

bundles have a 3-dimensional intersection.
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even if B2, C2 and C6 are projected out of the spectrum in this case, we keep them in Φ+
C

as their fluxes are not.

In terms of Φ+
C the O(6, 6)-covariant superpotential is given by

W =

∫

〈dΦ+
C ,Φ

−〉 . (6.11)

Here the fluxes F3 and H3 are encoded in their local definition in terms of the gauge fields,

i.e. F3 = dC2, H3 = dB2. It is not hard to check that this reproduces eq. (5.27).

The term in eq. (5.28) involving the locally geometric NSNS flux Qij
k can also be easily

encoded in (6.11). For that, note that in general Φ+
C = eB2(Φ+

C)0, where (Φ+
C)0 is built out

of C+ and the pure spinor Φ+
0 . If instead of a B-transform one acts by a β-transformation,

the action of d on β2 gives the Q · JC term in eq. (5.28).

The remaining NSNS fluxes Q′ and H ′ in the 220 representation are locally non-

geometric and their contribution to the superpotential cannot be obtained from (6.11),

not even promoting d to an element in the 12 of O(6, 6). The reason for this is that, as

explained in section 4, these fluxes require extending the derivatives even further, going be-

yond the fundamental representations of O(6, 6) to the 56 representation of E7. Similarly,

non-geometric RR fluxes should also only appear when promoting the O(6, 6) covariance

to a full E7 one.

6.2 E7 formulation of N = 1 backgrounds

We review now the E7 covariant formulation of N = 1 backgrounds that descend from

N = 2 ones, following [39]. We work in the O(6, 6) × SL(2,R)|H basis, where the O(6, 6)

subgroup is that of Generalized Geometry.

The first step is to embed Φ−
0 and Φ+

0 into representations of E7. The easiest way is to

embed them in the 32’ and 32 representations of O(6, 6) that appear respectively in the

decomposition of the 56 and 133 representations of E7 (c.f. eqs. (3.1) and (3.5)). This

assignment is also consistent with the degrees of freedom in the N = 2 theory: those in

Φ− are the scalars of vector multiplets, while the deformations of Φ+ build up, together

with the dilaton and the RR axions, the hypermultiplets.

The moduli space is a direct product of these two moduli spaces, which implies in

particular that Φ−
0 should be a singlet under SL(2,R)|H . The pure spinor Φ−

0 is therefore

embedded as follows

λ0 = (0,Φ−
0 ) ∈ 56 . (6.12)

where we have used the notation in eq. (3.1).

The other spinor, Φ+
0 , combines with the dilaton to form a doublet of SL(2,R)|H . It

should also combine with the RR fields and transform non-trivially under the SU(2)R R-

symmetry. The way to realize all these conditions is to promote Φ+
0 to an SU(2)R triplet

of elements (K0
1 ,K

0
2 ,K

0
3 ), with K0

a ∈ 133, satisfying the real su(2) algebra [K0
a ,K

0
b ] =

2κǫabcK
0
c , with κ = e−2φvol6. Using the notation in eq. (3.5), we define K0

+ = K0
1 + iK0

2 by

K0
+ =

(

0, 0, e−φ(viSH + ωi
)

Φ+
0 ) ∈ 133 (6.13)
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where vi, ωi are those introduced in section 3.1 and SH is the heterotic complex dilaton

defined in eq. (3.9). K0
− is just the complex conjugate of K0

+, while K0
3 , obtained by

demanding the su(2) commutation relations, is given by

K0
3 =

1

4

(

uiūj + ūiuj, iuūJ +A
0 B , 0

)

(6.14)

with u ≡ (viSH + ωi), uū = (S − S̄)H = 2ie−2φvol6 and J+A
0 B is the generalized almost

complex structure defined by Φ+
0 in eq. (6.6).

In an analogous way as for the b-transform of Φ±, we can define b2, b6 and c+ trans-

formed objects of λ0 and K0 as

λ = ec
+
eb6eb2λ0 , Ka = ec

+
eb6eb2K0

a (6.15)

where ec
+
, eb6 and eb2 stand for the adjoint E7 action, given in eq. (A.4), by the corre-

sponding generators in (3.7). The b6 action on K+ shifts SH → SH + b6, as expected. The

c+ action generates, among other terms, a non-zero last component in K3, proportional to

c+. This implies that (e−φ Re Φ+, e−φ ImΦ+, C+) forms a triplet of SU(2)R, as it should.

An N = 1 supersymmetry is selected by choosing a U(1)R ⊂ SU(2)R, or equivalently a

vector ra such that a triplet of SU(2)R decomposes as a singlet and a doublet. The N = 1

supersymmetry selected in heterotic compactifications can be parameterized as r1 = r2 = 0,

r3 = 1, while for type II orientifold compactifications r3 = 0 and the N = 1 supersymmetry

is parameterized in this case by a single angle θ in the (r1, r2) plane. The singlet and doublet

components in the triplet (K+,K−,K3) are selected in each case by the vectors

heterotic : (r+, r−, r3) = (0, 0, 1) , (z+, z−, z3) = (1, 0, 0) ,

type II : (r+, r−, r3) = (ieiθ,−ie−iθ, 0) , (z+, z−, z3) =

(

i

2
eiθ,

i

2
e−iθ, 1

)

.
(6.16)

Hence, defining the N = 1 field as

KC = zaKa , (6.17)

we have that the spinor component along ωi in the (2,32) piece of KC is indeed the N = 1

chiral field in eq. (6.10) for type II compactifications.

6.3 General U-duality covariant superpotential

We are now ready to compute with the above tools the U-duality covariant superpotential

for general SU(3) structure compactifications. In terms of the geometric objects λ and KC

the superpotential in the E7 covariant formulation is given by [39]

W =

∫

S(λ,DKC) . (6.18)

Here D is the generalized derivative defined in eq. (4.6), transforming in the 56 represen-

tation, KC = gK0
C and λ = gλ0, with g = eA a generic group element of E7. S is the

symplectic invariant in the 56 representation, whose O(6, 6) × SL(2,R) decomposition is
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given in eq. (A.5) of the appendix and za is the vector introduced in (6.16). For consistency

DKa, the generalized derivative of Ka, is projected onto the 56 representation.

Extracting the group elements g and making use of the symplectic invariance, the

superpotential above can be recast as

W =

∫

S(λ0,DK0
C) (6.19)

where the derivative is now acting on the bare objects with a superindex 0, while derivatives

of the gauge fields (the fluxes) have been encoded in the generalized connection [39, 62],

DAB
C = DAδBC + FAB

C , (6.20)

with

FAB
C = (g−1)BDD

AgDC . (6.21)

While in ref. [39] the derivative was restricted to the standard derivative, D = (∂mv
i, 0),

and at the same time the gauge fields were taken to be in the geometric subgroup, here

we consider the full D defined in eq. (4.6) and the full set of 133 gauge fields. Hence, the

tensor FAB
C ∈ 912 involves all the field strengths introduced in section 4.

The generalized connection applied to KCD in the 133 and projected onto the 56 gives

(DK)A = SBC
(

DBKCA + FAB
EK

CE
)

. (6.22)

Note that λ0, given in eq. (6.12), has only a (1,32’) piece (equal to Ω for SU(3) structure

compactifications) and therefore only the 3-form piece in the (1,32’) part of (DK)A is

kept. Thus we get

W =

∫

〈Ω,DK(1,32’)
C 〉 . (6.23)

According to our above discussion, for heterotic string compactifications with global

SU(3) structure, KC = K+, defined in eq. (6.13), and Φ+
0 = eiJ . Fluxes surviving the

projection are in the (220,2) and (12,2) representations of O(6, 6)×SL(2,R)|H . They act

on K0
+, which has only a spinor component, as shown in eq. (A.6), leading to18

Whet. =

∫

e−φΩ ∧
[

(fABC1 − SHf
ABC2)ΓABCe

iJ + (fA1 − SHf
A2)ΓAe

iJ
]

. (6.24)

This is almost exactly the same expression than the one that we derived for toroidal het-

erotic orbifold compactifications, eq. (5.33), except that we are missing the complexification

of J . A bare gauge field like B2 appears because the connection FAB
C in (6.21) is actually

defined in terms of generalized derivatives of the group elements g ∈ E7, obtained by ex-

ponentiating the generators A. In sections 2.2 and 4 we have actually used only the first

order term in the exponentials to label the fluxes, namely H3, ω, Q, R, etc. were defined

as fAB
C = DAAB

C . The difference between these two definitions involves terms containing

bare gauge fields. For the simpler case of heterotic compactifications, where the RR fields

18We have canceled the vol6 factor in SH with inverse volume factors in the ωi components of the fluxes

(see eq. (4.3)).
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are set to zero, these fluxes differ precisely by factors of eB2 , which combine with eiJ to

form eJc .

The other difference with respect to eq. (5.33) is an extra overall e−φ factor in eq. (6.24).

This factor can be actually absorbed by a Kähler transformation of (6.9), leading to the

canonical Kähler metric for heterotic string compactifications, given in eq. (5.31).

Hence, taking all these observations into account, we have that the flux induced su-

perpotential, derived from eq. (6.18), for general heterotic compactifications with global

SU(3) structure is given by,

Whet. =

∫

Ω ∧
[

(H3 − SHH̃3) + (ω − SHQ
′) · Jc + (Q− SHω

′) · J2
c + (R − SHH

′) · J3
c

]

+

∫

Ω ∧
[

(ω − SHQ′) ∧ Jc + (Q− SHω′) · J2
c

]

(6.25)

where contractions were defined in eqs. (5.34),

(Q · J2
c )pqr = Qm(Jc ∧ Jc)pqrm (6.26)

and similarly for ω′ · J2
c .

In a similar way we can compute the superpotential for type IIB compactifications with

O3-planes. This requires a little more work. The orientifold projection sets in this case

θ = 0 , ⇒ zaKa =
i

2
(K+ +K−) +K3 ≡ KO3 . (6.27)

We need to express λ0 and K0, given in eqs. (6.12), (6.13) and (6.14) in the O(6, 6) ×
SL(2,R)|H basis, in terms of the O(6, 6) × SL(2,R)|B basis. This can be done with the

help of tables 1 and 2. The resulting expressions in the O(6, 6) × SL(2,R)|B basis are

λ0|B = (0,Ω) ,

KO3|B = vol6

(

−1

2
e−2φ(J +)mn , 0 , ṽi

(

2e−2φ(J +)mn + e−φǫ123456 − ie−3φJ + e−4φvol6

)

+ ω̃i

(

− i
2
e−φJ2ǫ123456 + ǫ123456 − 2e−2φ(J +)mn +

i

6
e−3φJ3

))

(6.28)

where J + is defined in eq. (6.6).

The fluxes surviving the projection are in the (2,12) and (2,220) representations of

O(6, 6) × SL(2,R)|B (see table 4). In the notation of eq. (4.2), they read

f iA =ṽi(Qa + Paǫ
123456) + ω̃i(P a + Q′

aǫ
123456) .

f iABC =ṽi
(

Fabc +Qab
c + P ′a

bc ǫ
123456 +H ′abcǫ123456

)

+ ω̃i
(

Habc + P bc
a +Q′a

bcǫ
123456 + F ′abcǫ123456

)

.

(6.29)
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Making use of vol6 = J3/6 and the fact that (J +)mn and (J +)mn are respectively propor-

tional to Jmn and Jmn, we obtain

WO3 =

∫

Ω ∧
[

(F3 − ie−φH3) + (Q− ie−φP ) ·
(

− i

2
e−φJ2

)

+ (P ′ − ie−φQ′) · e−2φJ − (H ′ − ie−φF ′) ·
(

− i

6
e−3φJ3

)

+ (Qm − ie−φP m) ·
(

− i

2
e−φJ2

)

+ (Pm − ie−φQ′
m) ∧ e−2φJ

]

,

(6.30)

where the contractions are as in eqs. (5.34) for the (220,2) fluxes, while Qm and P a act

by a single contraction, as in (6.26).

We proceed now to express (6.30) in terms of the N = 1 variables SB and Jc defined

in (3.10) and (5.24) respectively. For that aim, we observe that J and J3, which build

up Im(Φ+
0 ), are given in terms of Re(Φ+

0 ) by the derivative of the Hitchin functional [12–

15, 22, 23]. This leads to the useful relations

Jp1p2 =
1

384
J2

i1i2i3i4J
2
i5i6p1p2

ǫi1...i6 ,

J3
p1...p6

=
5

128
J2

i1i2i3i4J
2
i5i6[p1p2

J2
p3p4p5p6]

ǫi1...i6

(6.31)

Note that eq. (6.30) is also missing the contribution from the RR axions C0 and C4.

The reason is the same than for the heterotic superpotential. For instance, notice that

when considering higher orders in the exponential eA, eq. (A.4) tells us that the group

element corresponding to the 2-form part along ṽi (whose generator is c2) gets a shift

c2 → c2 + c0b2. Hence, d(c2 − c0b2) = F3 − c0H3 and the factor of c0H3 combines with

ie−φH3 in eq. (6.30) to build up SBH3. When considering only geometric gauge fields,

this is the only contribution of the RR axions appear. However, when all fields in the 133

are taken into account, there are extra terms where C4 appears linearly, quadratically or

cubically, which combine with J2 factors to build up different powers of Jc.

Taking into account these two facts, it is not hard to show that the flux induced

superpotential derived from eq. (6.18) for general type IIB orientifold compactifications

with O3-planes and global SU(3) structure is,

WO3 =

∫

Ω ∧ [(F3 − SBH3) + (Q− SBP ) · Jc + (P ′ − SBQ
′) · J 2

c + (H ′ − SBF
′) · J 3

c ]

+

∫

Ω ∧
[

(Pm − SBQ′
m) ∧ Jc + (Qm − SBP m) · J 2

c

]

(6.32)

Let us stress that expressions (6.25) and (6.32) have been derived in the context of

general SU(3) structure compactifications, and therefore not only apply to toroidal orbifold

compactifications, but also to general N = 1 compactifications of string theory.

It is also interesting to comment on the possible uplift of superpotential (6.32) to F-

theory. Indeed, superpotential (5.27) has a well-known interpretation in terms of F-theory

compactifications on elliptically fibered Calabi-Yau 4-folds [51]. From this point of view,
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NSNS and RR 3-form fluxes correspond to different components of the M-theory/F-theory

4-form,

G4 =
∑

i=1,2

Hi ∧ θi = (F3 − SH3) ∧ dz̄ + (F3 − S̄H3) ∧ dz (6.33)

where θi is a basis of integral 1-forms in the elliptic fiber, which we have complexified in

the r.h.s. of this expression. In terms of G4, the superpotential (5.27) becomes,

W =

∫

Ω4 ∧G4 (6.34)

where Ω4 is the holomorphic 4-form, whose existence and uniqueness is guaranteed by the

SU(4) holonomy of the Calabi-Yau 4-fold.

Similarly, the second piece in eq. (6.32) also admits a natural uplift to F-theory. This

term is related to a background for the field strength of the complex parameter (4.19).

As it has been noted in [33], topologically non-trivial β2 and γ2-deformations (that is, Qij
k

and P ij
k fluxes) correspond to locally geometric type IIB backgrounds with a holomorphic

complex dilaton on which there is a deficit of (p, q) 7-brane charge. Thus, generic transition

functions gluing different patches contain not only diffeomorphisms and shifts of the B and

C fields, but also T-dualities and/or SL(2)|B rotations.

The form of (6.32) suggest that β2 and γ2 are different components of a 1-form along

the F-theory fiber,

Bpq =
∑

i=1,2

Fpq
i θi = (βpq − Sγpq)dz̄ + (βpq − S̄γpq)dz (6.35)

so that the first two terms in eq. (5.28) are recast as,

W =

∫

Ω4 ∧ [G4 + dB · Jc] (6.36)

Note also that taking ∂Um
q̃
W = W = 0 (in absence of 3-form fluxes), for all complex

structure moduli, requires (Q−SBP ) · Jc to be a primitive (2, 1)-form. This fact, together

with the condition obtained from imposing ∂T mq̃W = 0 for all Kähler moduli, implies

that (4.19) has to be an anti-holomorphic (0, 2) bi-vector in order to satisfy the N = 1

supersymmetry equations.

7 Conclusions

We have performed a detailed analysis of the relation between Exceptional Generalized Ge-

ometry and 4d gauged supergravities, providing an organizing principle for generic string

flux compactifications. The U-duality group, E7, which turns out to be also the structure

group of the generalized bundle in EGG, encodes much information on the 10d origin of

4d gaugings. In particular, we have established a precise dictionary between weights of the

912, 133 and 56 representations of E7 on one side, and fluxes, gauge fields and gauge pa-

rameters, respectively, on the other. Moreover, from different ways of decomposing E7 into

O(6, 6) × SL(2,R), we have identified different orientifold projections in 10d, generalizing

the results of [30].
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The Clebsh-Gordan decomposition of the 912 representation onto the tensor product

56×133 has provided us also with explicit local expressions for the field strengths in terms

of the gauge potentials. This in particular allows one to disentangle fluxes which admit

an uplift to 10d supergravity backgrounds, from locally non-geometric fluxes, whose field

strengths involve exotic exterior derivatives and which should be understood as 4d gaugings

resulting from String Theory backgrounds which do not admit a higher dimensional super-

gravity limit. Hence, the uplift of these backgrounds to 10d should be thought directly in

terms of String Theory compactifications. In addition, the E7 group structure allows us

also to distinguish globally geometric from globally non-geometric compactifications.

In this way, we have identified systematically all gaugings of 4d supergravity which

admit an uplift to backgrounds of 10d supergravity. Some of these backgrounds were al-

ready known, corresponding to fluxes of the NSNS and RR field-strengths, metric fluxes or

β-deformed backgrounds. Our analysis, however, reveals other types of 10d supergravity

backgrounds apart from the above ones. These turn out to be related to the RR counter-

parts of the β-deformation, which we have dubbed γ-deformations. We have formulated

γ-deformations in a precise way in the context of EGG. These new deformations provide the

natural generalization of the β-deformation to full-fledged F-theory backgrounds. These

results may have also interesting implications, via the AdS/CFT correspondence, for the

study of marginal deformations of N = 4 Super Yang-Mills with complex β parameter [46].

The above analysis gives also some clues on the possible 10d origin of some of the

particularly less well understood gaugings of 4d supergravity. In particular, we have shown

that 4d gaugings of N = 4 supergravity transforming in the (12,2) representation of

O(6, 6)×SL(2,Z) can be uplifted to backgrounds of 10d type IIB supergravity, correspond-

ing to β and/or γ-deformed backgrounds. Our results are also consistent with [37], where

it was noticed that a small subset of these gaugings can be also interpreted as particular

Scherk-Schwarz reductions (metric fluxes) of heterotic supergravity.

Whereas the above results directly apply to toroidal orbifold or orientifold compacti-

fications, where in absence of fluxes the bulk preserves N = 8 or N = 4 supersymmetry,

they are also relevant in more generic setups. The reason is that even if in generic N = 1

compactifications the global structure group is reduced to SU(3), the structure group of the

generalized tangent bundle is still given by O(6, 6)×SL(2,R). Hence, in the last part of this

work we have made use of the tools of EGG to derive the effective superpotential induced

by the fluxes in general N = 1 heterotic compactifications or type IIB compactifications

with O3 and/or O7-planes. These superpotentials, which we have derived here in a 10d

context, allow for the study of the F-term conditions associated to general backgrounds, in

particular those which involve β and γ-deformations apart from standard fluxes. We hope

to come back to this point in future work.
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A Summary of group theory results on E7

A.1 E7 root and weight system

E7 has rank seven (7 Cartan generators) and dimension 133. In the Cartan-Weyl basis,

the commutation relations of the algebra read,

[HI ,HJ ] = 0 , [HI , Eα] = αIEα , [Eα, Eβ ] =















ǫα,βEα+β α+ β ∈ ∆
∑

I α
IHI α+ β = 0

0 α+ β /∈ ∆

(A.1)

whereHI , I = 1 . . . 7, denote matrix representations of the I-th Cartan of E7, and similarly,

Eα denote matrix representations of the generator associated to the root α ∈ ∆, with ∆

the root lattice of E7. Even if ǫα,β = ±1 can be explicitly computed, we will not need

them in our computations. Representations are constructed by systematic application of

generators (associated to simple roots) to states, without anticommuting them.

A convenient way to write the roots is as vectors lying in a seven-dimensional subspace

of an eight-dimensional vector space, orthogonal to e7 + e8 (see for instance [63]). Namely,

(±1,±1, 0, 0, 0, 0; 0, 0) 60 roots

±(0, 0, 0, 0, 0, 0; 1,−1) 2 roots

±1

2
(±1,±1,±1,±1,±1,±1; 1,−1) even # of − signs in first 6 , 64 roots ,

where in the first set of roots the underline means that the two non-zero entries are at any

two positions in the first six components of the vector, and in the last set of roots there

should be an even number of minus signs in the first six entries. The first 60 roots together

with 6 Cartan generators, generate O(6, 6). The next two roots, together with a Cartan

generator generate SL(2,R), while the last 64 are the adjoint E7 elements in the (32,2).

Positive roots are defined as

ei ± ej 1 ≤ i < j ≤ 6

e8 − e7
1

2

(

e8 − e7 +

6
∑

i=1

(−1)νiei

)

∑

i=1

νi = even

A basis of simple roots is then given by

α1 = (1,−1, 0, 0, 0, 0; 0, 0) (A.2)

α2 = (0, 1,−1, 0, 0, 0; 0, 0)
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α3 = (0, 0, 1,−1, 0, 0; 0, 0)

α4 = (0, 0, 0, 1,−1, 0; 0, 0)

α5 = (0, 0, 0, 0, 1,−1; 0, 0)

α6 = (0, 0, 0, 0, 1, 1, ; 0, 0)

α7 =
1

2
(−1,−1,−1,−1,−1,−1;−1, 1)

The corresponding dual fundamental weights are

ω7 = (0, 0, 0, 0, 0, 0;−1, 1) ≡ ωL
1 : 133

ω5 =
1

2
(1, 1, 1, 1, 1,−1, ;−2, 2) ≡ ωL

2 : 912

ω6 =
1

2
(1, 1, 1, 1, 1, 1;−3, 3) ≡ ωL

3 : 8645

ω4 = (1, 1, 1, 1, 0, 0;−2, 2) ≡ ωL
4 : 365750

ω3 =

(

1, 1, 1, 0, 0, 0;−3

2
,
3

2

)

≡ ωL
5 : 27664

ω2 = (1, 1, 0, 0, 0, 0;−1, 1) ≡ ωL
6 : 1539

ω1 =

(

1, 0, 0, 0, 0, 0;−1

2
,
1

2

)

≡ ωL
7 : 56

We have indicated with a superscript L the corresponding weight in the notation used

in the Lie software [64] and we have indicated for which representation they are the highest

weight.

The weights of all the elements in the representations 56, 133 and 912 according to

their O(6, 6) × SL(2,R) assignments are

56

(12,2)

(

±1, 0, 0, 0, 0, 0;
1

2
,−1

2

)

(

±1, 0, 0, 0, 0, 0;−1

2
,
1

2

)

(32′,1)
1

2
(±1,±1,±1,±1,±1,±1; 0, 0) odd # of -

133

(32,2)
1

2
(±1,±1,±1,±1,±1,±1;−1, 1) even # of - in first 6

1

2
(±1,±1,±1,±1,±1,±1; 1,−1) even # of - in first 6

(1,3) ±(0, 0, 0, 0, 0, 0; 1,−1) + 1 Cartan

(66,1) (±1,±1, 0, 0, 0, 0; 0, 0) + 6 Cartans

912
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(32′,3)
1

2
(±1,±1,±1,±1,±1,±1; 2,−2) odd # of - in first 6

1

2
(±1,±1,±1,±1,±1,±1;−2, 2) odd # of - in first 6

1

2
(±1,±1,±1,±1,±1,±1; 0, 0) odd # of - in first 6

(12,2)

(

±1, 0, 0, 0, 0, 0;
1

2
,−1

2

)

(

±1, 0, 0, 0, 0, 0;−1

2
,
1

2

)

(220,2)

(

±1,±1,±1, 0, 0, 0;−1

2
,
1

2

)

(

±1,±1,±1, 0, 0, 0;
1

2
,−1

2

)

5 copies of

(

±1, 0, 0, 0, 0, 0;
1

2
,−1

2

)

5 copies of

(

±1, 0, 0, 0, 0, 0;−1

2
,
1

2

)

(352,1)
1

2
(±3,±1,±1,±1,±1,±1; 0, 0) even # of -

5 copies of
1

2
(±1,±1,±1,±1,±1,±1; 0, 0) odd # of -

A.2 Some relevant formulas

The action of the adjoint representation (with parameter A) on the fundamental represen-

tation, decomposed in elements of O(6, 6) × SL(2,R) is

δλiA = Ai
jλ

jA +AA
Bλ

iB + 〈Ai+,ΓAλ−〉 ,

δλ− =
1

4
AABΓABλ− + ǫijλ

iAΓAA
j+ .

(A.3)

The adjoint action on the 133 representation (with parameter A′) is given by δA = [A′, A]

where
δAi

j = A′i
kA

k
j −Ai

kA
′k

j + ǫjk

(

〈A′i+, Ak+〉 − 〈Ai+, A′k+〉
)

,

δAA
B = A′A

CA
C

B −AA
CA

′C
B + ǫij〈A′i+,ΓA

BA
j+〉 ,

δAi+ = A′i
jA

j+ −Ai
jA

′j+ +
1

4
A′

ABΓABAi+ − 1

4
AABΓABA′i+ .

(A.4)

The E7 symplectic invariant is

S(λ, λ′) = ǫijλ
iAλ′jBηAB + 〈λ+, λ

′+〉 , (A.5)

The projection on the 56 in the tensor product 912× 133 is given by

λiA = n1 f
jAAi

j + n2 f
iBACAηBC + n3 〈f i

j
−,ΓAAj+〉+ n4 〈fA+, Ai+〉+ n5 f

iABCABC

λ− = n6 ǫijf
iAΓAA

j+ + n7 f
i
j
−Aj

i + n8AACΓAfC+ + n9 ǫijf
iABCΓABCA

j+

(A.6)

where n1 . . . n9 are some constant coefficients which we leave undetermined.
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flux O(6, 6) × SL(2, R)|H O(6, 6) × SL(2, R)|B (−1)FL ΩP Total #

Q′123456
1 , Q′[2,3456] 6 × (1, 0, 0, 0, 0, 0 ;+,−) 6 × (−1, 0, 0, 0, 0, 0 ;+,−) + + 6+30

Q1, Q1m
m 6 × (−1, 0, 0, 0, 0, 0 ;−, +) 6 × (1, 0, 0, 0, 0, 0 ;−, +) + + 6+30

ω1, ω
m
1m 6 × (1, 0, 0, 0, 0, 0 ;−, +) 6 × (−,+, +, +, +, + ; 0, 0) + − 6+30

ω′1, ω′1m
m 6 × (−1, 0, 0, 0, 0, 0 ;+,−) 6 × (+,−,−,−,−,− ; 0, 0) + − 6+30

F12345 (+, +, +, +, +,− ;−1, 1) (+, +, +, +,+, 3
2

; 0, 0) − + 6

F123 (+, +, +,−,−,− ;−1, 1) (0, 0, 0, 1, 1, 1 ;−, +) − − 20

F1 (+,−,−,−,−,− ;−1, 1) (−,+, +, +, +, + ;−1, 1) − + 6

P 6, P 6m
m 6 × (+, +, +, +, +,− ; 0, 0) 6 × (1, 0, 0, 0, 0, 0 ;+,−) − − 6+30

P 456, P ′4,56, P m456
m 6 × (+, +, +,−,−,− ; 0, 0) 6 × (−,−,−, +, +, + ; 0, 0) − + 20+40+60

P 23456, P ′2,3456 6 × (+,−,−,−,−,− ; 0, 0) 6 × (−1, 0, 0, 0, 0, 0 ;−, +) − − 6+30

F ′6,123456 (+, +, +, +, +,− ; 1,−1) (−,−,−,−,−, + ; 1,−1) − + 6

F ′456,123456 (+, +, +,−,−,− ; 1,−1) (−1,−1,−1, 0, 0, 0; +,−) − − 20

F ′23456,123456 (+,−,−,−,−,− ; 1,−1) (− 3
2
,−,−,−,−,− ; 0, 0) − + 6

H123 (1, 1, 1, 0, 0, 0 ;−, +) (0, 0, 0, 1, 1, 1 ;+,−) + + 20

ω2
13 (1,−1, 1, 0, 0, 0 ;−,+) (−, 3

2
,−, +, +, + ; 0, 0) + − 60

Q12
3 (−1,−1, 1, 0, 0, 0 ;−, +) (1, 1,−1, 0, 0, 0 ;−,+) + + 60

R123 (−1,−1,−1, 0, 0, 0 ;−, +) (+,+, +,−,−,− ;−1, 1) + − 20

H̃123 (1, 1, 1, 0, 0, 0 ;+,−) (−,−,−, +, +, + ; 1,−1) + − 20

Q′3,3456 (1, 1,−1, 0, 0, 0 ; +,−) (−1,−1, 1, 0, 0, 0 ;+,−) + + 60

ω′12356,56 (0, 0, 0, 1,−1,−1 ;+,−) (−,−,−,− 3
2
, +, + ; 0, 0) + − 60

H ′123,123456 (−1,−1,−1, 0, 0, 0 ;+,−) (0, 0, 0,−1,−1,−1 ;−, +) + + 20

F̂1 ( 3
2
, +, +, +, +, + ; 0, 0) (−,+, +, +, +, + ; 1,−1) − + 6

P 23
1 ( 3

2
,−,−, +, +, + ; 0, 0) (−1, 1, 1, 0, 0, 0 ; +,−) − − 60

P ′1,12 (− 3
2
,−, +, +, +, + ; 0, 0) ( 3

2
, +,−,−,−,− ; 0, 0) − + 30

P ′1,1234 (− 3
2
,−,−,−, +, + ; 0, 0) (1, 0, 0, 0,−1,−1 ;−, +) − − 60

P 2345
1 ( 3

2
,−,−,−,−, + ; 0, 0) (− 3

2
, +, +, +, +,− ; 0, 0) − + 30

F̂ ′1,123456 (− 3
2
,−,−,−,−,− ; 0, 0) (+,−,−,−,−,− ;−1, 1) − + 6

Table 6. Field strengths transforming in the 912 of E7. We use the shorthand notation ± ≡ ± 1
2 .

B Tensor structure of U-dual fluxes

In the following tables we summarize the tensor structure of fluxes transforming in the

912 representation of E7, as it can be read from their weight assignments in the O(6, 6)×
SL(2,R)|H basis. We present also the corresponding weight in the O(6, 6)×SL(2,R)|B basis

(c.f. section 3.3), their transformation properties under the space-time fermionic number

for left-movers and the worldsheet parity operators, and the total number of components

for each flux.

States which come in 6 copies are distributed among different representations of

O(6, 6) × SL(2,R). In particular, Q′123456
i , Qi, ωi and ω′i (Q′123456

i , Qi , P i and P ijklm)

transform in the (12,2) in the O(6, 6) × SL(2,R)|H basis (O(6, 6) × SL(2,R)|B basis),
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whereas Q′[i,jklm], Qij
j , ωi

im and ω′i
ij (Q′[i,jklm], Qij

j , P ij
j and P ′[i,jklm]) transform in the

(220,2). Similarly, P i, P ijk and P ijklm (ωi, ω′i and P ijk) transform in the (32′,3) in

the O(6, 6)× SL(2,R)|H basis (O(6, 6)× SL(2,R)|B basis), whereas ωi
ji, ω

′i
ji, L

ijk and P ijkl
i

(P ji
i , P ′[i,jklm], Lijk and P ijkl

i ) transform in the (352,1).
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