104 research outputs found
Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection
cDNA-AFLP methodology was used to gain insight into gene fragments differentially present in the mRNA profiles of Quercus suber roots infected with zoospores of Phytophthora cinnamomi at different post challenge time points. Fifty-three transcript-derived fragments (TDFs) were identified and sequenced. Six candidate genes were selected based on their expression patterns and homology to genes known to play a role in defence. They encode a cinnamyl alcohol dehydrogenase2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), a thaumatin-like protein (QsTLP), a chitinase (QsCHI) and a 1,3-β-glucanase (QsGlu). Evaluation of the expression of these genes by quantitative polymerase chain reaction (qPCR) revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the first 24 h post-inoculation, while those of thaumatin-like protein decreased. No differential expression was observed for 1,3-β-glucanase (QsGlu).Four candidate reference genes, polymerase II (QsRPII), eukaryotic translation initiation factor 5A (QsEIF-5A), β-tubulin (QsTUB) and a medium subunit family protein of clathrin adaptor complexes (QsCACs) were assessed to determine the most stable internal references for qRT-PCR normalization in the Phytophthora-Q. suber pathosystem in root tissues. Those found to be more stable, QsRPII and QsCACs, were used as internal reference in the present work.Knowledge on the Quercus defence mechanisms against biotic stress is scarce. This study provides an insight into the gene profiling of a few important genes of Q. suber in response to P. cinnamomi infection contributing to the knowledge of the molecular interactions involving Quercus and root pathogens that can be useful in the future to understand the mechanisms underlying oak resistance to soil-borne oomycetes.Peer Reviewe
Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure
Effects of experiment start time and duration on measurement of standard physicological variables
Duration and start time of respirometry experiments have significant effects on the measurement of basal values for several commonly measured physiological variables (metabolic rate, evaporative water loss and body temperature). A longer measurement duration reduced values for all variables for all start times, and this was an effect of reduced animal activity rather than random sampling. However, there was also an effect of circadian rhythm on the timing of minimal physiological values. Experiment start time had a significant effect on time taken to reach minimal values for all variables, ranging from 4:00 h ± 38 min (body temperature, start time 23:00 h) to 8:54 h ± 52 min (evaporative water loss, start time 17:00 h). It also influenced the time of day that minimal values were obtained, ranging from 22:24 h ± 40 min (carbon dioxide production, start time 15:00 h) to 06:00 h ± 57 min (oxygen consumption, start time 23:00 h), and the minimum values measured. Consequently both measurement duration and experiment start time should be considered in experimental design to account for both a handling and a circadian effect on the animal’s physiology. We suggest that experiments to measure standard physiological variables for small diurnal birds should commence between 17:00 h and 21:00 h, and measurement duration should be at least 9 h
Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine
<p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (<it>Pinus pinaster </it>Ait.), the main conifer used for commercial plantation in southwestern Europe.</p> <p>Results</p> <p>We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 <it>in vitro </it>SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 <it>in silico </it>SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for <it>in silico </it>and <it>in vitro </it>SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a <it>Pinus taeda </it>linkage map, made it possible to align the 12 linkage groups of both species.</p> <p>Conclusions</p> <p>Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.</p
Genomics in neurodevelopmental disorders: an avenue to personalized medicine
Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental
disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in
genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous
mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered,
the etiological variability and the heterogeneous clinical presentation, the need for genotype — along with phenotype-
based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in
genomic analysis and their translation into clinical practice
Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations
Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Farming for pests? Local and landscape-scale effects of grassland management on rabbit densities
- …
